Deformation characteristics and analog modeling of transtensional structures in the Dongying Sag, Bohai Bay Basin

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Dawei Dong, Li Zhao, Weizhong Zhang, Jiyan Li, Ruixiang Zhang, Jianlei Yang, Guangzeng Wang
{"title":"Deformation characteristics and analog modeling of transtensional structures in the Dongying Sag, Bohai Bay Basin","authors":"Dawei Dong, Li Zhao, Weizhong Zhang, Jiyan Li, Ruixiang Zhang, Jianlei Yang, Guangzeng Wang","doi":"10.1007/s11707-022-1062-6","DOIUrl":null,"url":null,"abstract":"<p>Hydrocarbon exploration in the Dongying Sag is constrained by the development of many Cenozoic transtensional structures with complex patterns and dynamic mechanisms. This study uses seismic interpretation and analog modeling to investigate these transtensional structures. Significant results include dividing these transtensional structures into boundary fault, oblique rifting, and deep strike-slip fault controlled structures, according to the relationships between main and secondary faults. They developed in the steep slope zone, the central sag zone, and the slope zone, respectively. In profile, the transtensional structures formed appear to be semi-flower-like, step-like, or negative-flower-like. In plan-view, they appear to be broom-like, soft-linked, or en-echelon structures. Further, these transtensional structures are controlled by the oblique normal slip of boundary faults, by the oblique extension of sub-sags, and by the later extension of deep strike-slip faults. The geometric deformation of these transtensional structures is controlled by the angles between the regional extension direction and the strike of boundary faults, deep faults, or sub-sags, where a larger angle corresponds to less developed transtensional structures. Further, the transtensional structures in the Dongying Sag were created by multiphase and multi-directional extensions in the Cenozoic— which is also controlled by pre-existing structures. The strike of newborn secondary faults was determined by the regional extension direction and pre-existing structures.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-022-1062-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrocarbon exploration in the Dongying Sag is constrained by the development of many Cenozoic transtensional structures with complex patterns and dynamic mechanisms. This study uses seismic interpretation and analog modeling to investigate these transtensional structures. Significant results include dividing these transtensional structures into boundary fault, oblique rifting, and deep strike-slip fault controlled structures, according to the relationships between main and secondary faults. They developed in the steep slope zone, the central sag zone, and the slope zone, respectively. In profile, the transtensional structures formed appear to be semi-flower-like, step-like, or negative-flower-like. In plan-view, they appear to be broom-like, soft-linked, or en-echelon structures. Further, these transtensional structures are controlled by the oblique normal slip of boundary faults, by the oblique extension of sub-sags, and by the later extension of deep strike-slip faults. The geometric deformation of these transtensional structures is controlled by the angles between the regional extension direction and the strike of boundary faults, deep faults, or sub-sags, where a larger angle corresponds to less developed transtensional structures. Further, the transtensional structures in the Dongying Sag were created by multiphase and multi-directional extensions in the Cenozoic— which is also controlled by pre-existing structures. The strike of newborn secondary faults was determined by the regional extension direction and pre-existing structures.

渤海湾盆地东营下陷横断构造的变形特征与模拟模型
东营下陷的油气勘探受制于新生代许多具有复杂形态和动态机制的转折构造的发育。本研究利用地震解释和模拟建模来研究这些横断构造。重要成果包括:根据主次断层之间的关系,将这些横断构造分为边界断层、斜断裂和深层走向滑动断层控制构造。它们分别发育在陡坡带、中央凹陷带和斜坡带。从剖面上看,形成的转折构造呈半花状、台阶状或负花状。从平面图上看,它们似乎是扫帚状、软连接或内螺纹结构。此外,这些转折构造受边界断层的斜向法向滑动、副鞍状断层的斜向延伸以及深走向滑动断层的后期延伸的控制。这些转折构造的几何变形受区域延伸方向与边界断层、深层断层或次级塌陷走向之间夹角的控制,夹角越大,转折构造越不发达。此外,东营下陷的横断构造是新生代多期、多向延伸形成的,这也受原有构造的控制。新生次生断层的走向是由区域延伸方向和原有构造决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Earth Science
Frontiers of Earth Science GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
5.00%
发文量
627
期刊介绍: Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信