{"title":"Estimation of Hammerstein nonlinear systems with noises using filtering and recursive approaches for industrial control","authors":"","doi":"10.1631/fitee.2300620","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper discusses a strategy for estimating Hammerstein nonlinear systems in the presence of measurement noises for industrial control by applying filtering and recursive approaches. The proposed Hammerstein nonlinear systems are made up of a neural fuzzy network (NFN) and a linear state`-space model. The estimation of parameters for Hammerstein systems can be achieved by employing hybrid signals, which consist of step signals and random signals. First, based on the characteristic that step signals do not excite static nonlinear systems, that is, the intermediate variable of the Hammerstein system is a step signal with different amplitudes from the input, the unknown intermediate variables can be replaced by inputs, solving the problem of unmeasurable intermediate variable information. In the presence of step signals, the parameters of the state-space model are estimated using the recursive extended least squares (RELS) algorithm. Moreover, to effectively deal with the interference of measurement noises, a data filtering technique is introduced, and the filtering-based RELS is formulated for estimating the NFN by employing random signals. Finally, according to the structure of the Hammerstein system, the control system is designed by eliminating the nonlinear block so that the generated system is approximately equivalent to a linear system, and it can then be easily controlled by applying a linear controller. The effectiveness and feasibility of the developed identification and control strategy are demonstrated using two industrial simulation cases.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"22 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300620","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper discusses a strategy for estimating Hammerstein nonlinear systems in the presence of measurement noises for industrial control by applying filtering and recursive approaches. The proposed Hammerstein nonlinear systems are made up of a neural fuzzy network (NFN) and a linear state`-space model. The estimation of parameters for Hammerstein systems can be achieved by employing hybrid signals, which consist of step signals and random signals. First, based on the characteristic that step signals do not excite static nonlinear systems, that is, the intermediate variable of the Hammerstein system is a step signal with different amplitudes from the input, the unknown intermediate variables can be replaced by inputs, solving the problem of unmeasurable intermediate variable information. In the presence of step signals, the parameters of the state-space model are estimated using the recursive extended least squares (RELS) algorithm. Moreover, to effectively deal with the interference of measurement noises, a data filtering technique is introduced, and the filtering-based RELS is formulated for estimating the NFN by employing random signals. Finally, according to the structure of the Hammerstein system, the control system is designed by eliminating the nonlinear block so that the generated system is approximately equivalent to a linear system, and it can then be easily controlled by applying a linear controller. The effectiveness and feasibility of the developed identification and control strategy are demonstrated using two industrial simulation cases.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.