Khalid Ahmad, Cris Cecka, Michael Garland, Mary Hall
{"title":"Exploring Data Layout for Sparse Tensor Times Dense Matrix on GPUs","authors":"Khalid Ahmad, Cris Cecka, Michael Garland, Mary Hall","doi":"10.1145/3633462","DOIUrl":null,"url":null,"abstract":"<p>An important sparse tensor computation is sparse-tensor-dense-matrix multiplication (SpTM), which is used in tensor decomposition and applications. SpTM is a multi-dimensional analog to sparse-matrix-dense-matrix multiplication (SpMM). In this paper, we employ a hierarchical tensor data layout that can unfold a multidimensional tensor to derive a 2D matrix, making it possible to compute SpTM using SpMM kernel implementations for GPUs. We compare two SpMM implementations to the state-of-the-art PASTA sparse tensor contraction implementation using: (1) SpMM with hierarchical tensor data layout; and, (2) unfolding followed by an invocation of cuSPARSE’s SpMM. Results show that SpMM can outperform PASTA 70.9% of the time, but none of the three approaches is best overall. Therefore, we use a decision tree classifier to identify the best performing sparse tensor contraction kernel based on precomputed properties of the sparse tensor.</p>","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"33 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3633462","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
An important sparse tensor computation is sparse-tensor-dense-matrix multiplication (SpTM), which is used in tensor decomposition and applications. SpTM is a multi-dimensional analog to sparse-matrix-dense-matrix multiplication (SpMM). In this paper, we employ a hierarchical tensor data layout that can unfold a multidimensional tensor to derive a 2D matrix, making it possible to compute SpTM using SpMM kernel implementations for GPUs. We compare two SpMM implementations to the state-of-the-art PASTA sparse tensor contraction implementation using: (1) SpMM with hierarchical tensor data layout; and, (2) unfolding followed by an invocation of cuSPARSE’s SpMM. Results show that SpMM can outperform PASTA 70.9% of the time, but none of the three approaches is best overall. Therefore, we use a decision tree classifier to identify the best performing sparse tensor contraction kernel based on precomputed properties of the sparse tensor.
期刊介绍:
ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.