Crossing Malmquist Systems with Certain Types

Pub Date : 2023-12-28 DOI:10.3103/s1068362323060080
F. N. Wang, K. Liu
{"title":"Crossing Malmquist Systems with Certain Types","authors":"F. N. Wang, K. Liu","doi":"10.3103/s1068362323060080","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we will present the expression of meromorphic solutions on the crossing differential or difference Malmquist systems of certain types using Nevanlinna theory. For instance, we consider the admissible meromorphic solutions of the crossing differential Malmquist system</p><span>$$\\begin{cases}f^{\\prime}_{1}(z)=\\frac{a_{1}(z)f_{2}(z)+a_{0}(z)}{f_{2}(z)+d_{1}(z)},\\\\ f^{\\prime}_{2}(z)=\\frac{a_{2}(z)f_{1}(z)+b_{0}(z)}{f_{1}(z)+d_{2}(z)},\\end{cases}$$</span><p>where <span>\\(a_{1}(z)d_{1}(z)\\not\\equiv a_{0}(z)\\)</span> and <span>\\(a_{2}(z)d_{2}(z)\\not\\equiv b_{0}(z)\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362323060080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we will present the expression of meromorphic solutions on the crossing differential or difference Malmquist systems of certain types using Nevanlinna theory. For instance, we consider the admissible meromorphic solutions of the crossing differential Malmquist system

$$\begin{cases}f^{\prime}_{1}(z)=\frac{a_{1}(z)f_{2}(z)+a_{0}(z)}{f_{2}(z)+d_{1}(z)},\\ f^{\prime}_{2}(z)=\frac{a_{2}(z)f_{1}(z)+b_{0}(z)}{f_{1}(z)+d_{2}(z)},\end{cases}$$

where \(a_{1}(z)d_{1}(z)\not\equiv a_{0}(z)\) and \(a_{2}(z)d_{2}(z)\not\equiv b_{0}(z)\).

分享
查看原文
与某些类型的马尔奎斯特系统交叉
摘要 在本文中,我们将利用 Nevanlinna 理论来介绍某些类型的交叉微分或差分 Malmquist 系统上的并形解的表达式。例如,我们考虑了交叉微分 Malmquist 系统$$begin{cases}f^{\prime}_{1}(z)=\frac{a_{1}(z)f_{2}(z)+a_{0}(z)}{f_{2}(z)+d_{1}(z)}的可容许分形解、\\ f^{prime}_{2}(z)=frac{a_{2}(z)f_{1}(z)+b_{0}(z)}{f_{1}(z)+d_{2}(z)},\end{cases}$$ 其中(a_{1}(z)d_{1}(z)\not\equiv a_{0}(z))和(a_{2}(z)d_{2}(z)\not\equiv b_{0}(z))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信