Derivatives of Meromorphic Functions Sharing Polynomials with Their Difference Operators

Pub Date : 2023-12-28 DOI:10.3103/s1068362323060079
M.-H. Wang, J.-F. Chen
{"title":"Derivatives of Meromorphic Functions Sharing Polynomials with Their Difference Operators","authors":"M.-H. Wang, J.-F. Chen","doi":"10.3103/s1068362323060079","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we investigate the uniqueness of meromorphic functions of finite order <span>\\(f(z)\\)</span> concerning their difference operators <span>\\(\\Delta_{c}f(z)\\)</span> and derivatives <span>\\(f^{\\prime}(z)\\)</span> and prove that if <span>\\(\\Delta_{c}f(z)\\)</span> and <span>\\(f^{\\prime}(z)\\)</span> share <span>\\(a(z)\\)</span>, <span>\\(b(z)\\)</span>, <span>\\(\\infty\\)</span> CM, where <span>\\(a(z)\\)</span> and <span>\\(b(z)\\)</span> are two distinct polynomials, then they assume one of following cases: <span>\\((1)\\)</span>\n<span>\\(f^{\\prime}(z)\\equiv\\Delta_{c}f(z)\\)</span>; <span>\\((2)\\)</span>\n<span>\\(f(z)\\)</span> reduces to a polynomial and <span>\\(f^{\\prime}(z)-A\\Delta_{c}f(z)\\equiv(1-A)(c_{n}z^{n}+c_{n-1}z^{n-1}+\\cdots+c_{1}z+c_{0})\\)</span>, where <span>\\(A(\\neq 1)\\)</span> is a nonzero constant and <span>\\(c_{n},c_{n-1},\\cdots,c_{1},c_{0}\\)</span> are all constants. This generalizes the corresponding results due to Qi et al. and Deng et al.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362323060079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the uniqueness of meromorphic functions of finite order \(f(z)\) concerning their difference operators \(\Delta_{c}f(z)\) and derivatives \(f^{\prime}(z)\) and prove that if \(\Delta_{c}f(z)\) and \(f^{\prime}(z)\) share \(a(z)\), \(b(z)\), \(\infty\) CM, where \(a(z)\) and \(b(z)\) are two distinct polynomials, then they assume one of following cases: \((1)\) \(f^{\prime}(z)\equiv\Delta_{c}f(z)\); \((2)\) \(f(z)\) reduces to a polynomial and \(f^{\prime}(z)-A\Delta_{c}f(z)\equiv(1-A)(c_{n}z^{n}+c_{n-1}z^{n-1}+\cdots+c_{1}z+c_{0})\), where \(A(\neq 1)\) is a nonzero constant and \(c_{n},c_{n-1},\cdots,c_{1},c_{0}\) are all constants. This generalizes the corresponding results due to Qi et al. and Deng et al.

分享
查看原文
与它们的差分算子共享多项式的单项式函数的衍生物
Abstract 在本文中,我们研究了有限阶微变函数 \(f(z)\) 关于其差分算子 \(\Delta_{c}f(z)\) 和导数 \(f^{\prime}(z)\) 的唯一性,并证明如果 \(\Delta_{c}f(z)\) 和 \(f^{\prime}(z)\) 共享 \(a(z)\)、\CM, 其中 (a(z))和 (b(z))是两个不同的多项式,那么它们假设以下情况之一:\((1)\)\(f^{\prime}(z)\equiv\Delta_{c}f(z)\);\((2)/)(f(z))减为多项式,并且(f^{\prime}(z)-A\Delta_{c}f(z)\equiv(1-A)(c_{n}z^{n}+c_{n-1}z^{n-1}+\cdots+c_{1}z+c_{0})、其中 \(A(\neq 1)\)是一个非零常数,而 \(c_{n},c_{n-1},\cdots,c_{1},c_{0}\) 都是常数。这概括了 Qi 等人和 Deng 等人的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信