Entire Functions and Their High Order Difference Operators

Pub Date : 2023-12-28 DOI:10.3103/s1068362323060043
S. Majumder, N. Sarkar, D. Pramanik
{"title":"Entire Functions and Their High Order Difference Operators","authors":"S. Majumder, N. Sarkar, D. Pramanik","doi":"10.3103/s1068362323060043","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we prove that for a transcendental entire function <span>\\(f\\)</span> of finite order such that <span>\\(\\lambda(f-a)&lt;\\rho(f)\\)</span>, where <span>\\(a\\)</span> is an entire function and satisfies <span>\\(\\rho(a)&lt;\\rho(f)\\)</span>, <span>\\(n\\in\\mathbb{N}\\)</span>, if <span>\\(\\Delta_{c}^{n}f\\)</span> and <span>\\(f\\)</span> share the entire function <span>\\(b\\)</span> satisfying <span>\\(\\rho(b)&lt;\\rho(f)\\)</span> CM, where <span>\\(c\\in\\mathbb{C}\\)</span> satisfies <span>\\(\\Delta_{c}^{n}f\\not\\equiv 0\\)</span>, then <span>\\(f(z)=a(z)+de^{cz}\\)</span>, where <span>\\(d,c\\)</span> are two nonzero constants. In particular, if <span>\\(a=b\\)</span>, then <span>\\(a\\)</span> reduces to a constant. This result improves and generalizes the recent results of Chen and Chen [3], Liao and Zhang [10] and Lü et al. [11] in a large scale. Also we exhibit some relevant examples to fortify our results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362323060043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that for a transcendental entire function \(f\) of finite order such that \(\lambda(f-a)<\rho(f)\), where \(a\) is an entire function and satisfies \(\rho(a)<\rho(f)\), \(n\in\mathbb{N}\), if \(\Delta_{c}^{n}f\) and \(f\) share the entire function \(b\) satisfying \(\rho(b)<\rho(f)\) CM, where \(c\in\mathbb{C}\) satisfies \(\Delta_{c}^{n}f\not\equiv 0\), then \(f(z)=a(z)+de^{cz}\), where \(d,c\) are two nonzero constants. In particular, if \(a=b\), then \(a\) reduces to a constant. This result improves and generalizes the recent results of Chen and Chen [3], Liao and Zhang [10] and Lü et al. [11] in a large scale. Also we exhibit some relevant examples to fortify our results.

分享
查看原文
全函数及其高阶差分算子
Abstract In this paper, we prove that for a transcendental entire function \(f\) of finite order such that \(\lambda(f-a)<\rho(f)\), where \(a\) is an entire function and satisfies \(\rho(a)<;\),如果(delta_{c}^{n}f)和(f)共享整个函数(b),满足(rho(b)</rho(f)),那么(n\in\mathbb{N}\),如果(delta_{c}^{n}f)和(f)共享整个函数(b),满足(rho(b)</rho(f))。CM, where \(c\inmathbb{C}\) satisfies \(\Delta_{c}^{n}f\not\equiv 0\), then \(f(z)=a(z)+de^{cz}\), where \(d,c\) are two nonzero constants.特别是,如果 \(a=b\) ,那么 \(a\) 就会简化为一个常数。这一结果改进并推广了 Chen and Chen [3]、Liao and Zhang [10] 和 Lü et al.此外,我们还列举了一些相关的例子来巩固我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信