Solution Representations for Poisson’s Equation, Martingale Structure, and the Markov Chain Central Limit Theorem

Q1 Mathematics
Peter W. Glynn, Alex Infanger
{"title":"Solution Representations for Poisson’s Equation, Martingale Structure, and the Markov Chain Central Limit Theorem","authors":"Peter W. Glynn, Alex Infanger","doi":"10.1287/stsy.2022.0001","DOIUrl":null,"url":null,"abstract":"The solution of Poisson’s equation plays a key role in constructing the martingale through which sums of Markov correlated random variables can be analyzed. In this paper, we study three different representations for the solution for countable state space irreducible Markov chains, two based on entry time expectations, and the other based on a potential kernel. Our consideration of null recurrent chains allows us to extend our theory to positive recurrent nonexplosive Markov jump processes. We also develop the martingale structure induced by these solutions to Poisson’s equation, under minimal conditions, and establish verifiable Lyapunov conditions to support our theory. Finally, we provide a central limit theorem for Markov dependent sums, under conditions weaker than have previously appeared in the literature.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2022.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The solution of Poisson’s equation plays a key role in constructing the martingale through which sums of Markov correlated random variables can be analyzed. In this paper, we study three different representations for the solution for countable state space irreducible Markov chains, two based on entry time expectations, and the other based on a potential kernel. Our consideration of null recurrent chains allows us to extend our theory to positive recurrent nonexplosive Markov jump processes. We also develop the martingale structure induced by these solutions to Poisson’s equation, under minimal conditions, and establish verifiable Lyapunov conditions to support our theory. Finally, we provide a central limit theorem for Markov dependent sums, under conditions weaker than have previously appeared in the literature.
泊松方程的解表示、马丁格尔结构和马尔可夫链中心极限定理
泊松方程的解在构建马氏模型中起着关键作用,通过马氏模型可以分析马尔可夫相关随机变量的总和。在本文中,我们研究了可数状态空间不可还原马尔可夫链解的三种不同表示,其中两种基于进入时间期望,另一种基于势核。我们对空循环链的考虑使我们能够将我们的理论扩展到正循环非爆炸性马尔可夫跳跃过程。我们还在最小条件下发展了这些泊松方程解所诱导的马丁格结构,并建立了可验证的 Lyapunov 条件来支持我们的理论。最后,我们提供了马尔可夫依赖和的中心极限定理,其条件比以前文献中出现的条件更弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信