{"title":"DSISA: A New Neural Machine Translation Combining Dependency Weight and Neighbors","authors":"Lingfang Li, Aijun Zhang, Ming-Xing Luo","doi":"10.1145/3638762","DOIUrl":null,"url":null,"abstract":"<p>Most of the previous neural machine translations (NMT) rely on parallel corpus. Integrating explicitly prior syntactic structure information can improve the neural machine translation. In this paper, we propose a Syntax Induced Self-Attention (SISA) which explores the influence of dependence relation between words through the attention mechanism and fine-tunes the attention allocation of the sentence through the obtained dependency weight. We present a new model, Double Syntax Induced Self-Attention (DSISA), which fuses the features extracted by SISA and a compact convolution neural network (CNN). SISA can alleviate long dependency in sentence, while CNN captures the limited context based on neighbors. DSISA utilizes two different neural networks to extract different features for richer semantic representation and replaces the first layer of Transformer encoder. DSISA not only makes use of the global feature of tokens in sentences but also the local feature formed with adjacent tokens. Finally, we perform simulation experiments that verify the performance of the new model on standard corpora.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"2 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638762","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Most of the previous neural machine translations (NMT) rely on parallel corpus. Integrating explicitly prior syntactic structure information can improve the neural machine translation. In this paper, we propose a Syntax Induced Self-Attention (SISA) which explores the influence of dependence relation between words through the attention mechanism and fine-tunes the attention allocation of the sentence through the obtained dependency weight. We present a new model, Double Syntax Induced Self-Attention (DSISA), which fuses the features extracted by SISA and a compact convolution neural network (CNN). SISA can alleviate long dependency in sentence, while CNN captures the limited context based on neighbors. DSISA utilizes two different neural networks to extract different features for richer semantic representation and replaces the first layer of Transformer encoder. DSISA not only makes use of the global feature of tokens in sentences but also the local feature formed with adjacent tokens. Finally, we perform simulation experiments that verify the performance of the new model on standard corpora.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.