Shunkov Groups Saturated with Almost Simple Groups

IF 0.4 3区 数学 Q4 LOGIC
N. V. Maslova, A. A. Shlepkin
{"title":"Shunkov Groups Saturated with Almost Simple Groups","authors":"N. V. Maslova,&nbsp;A. A. Shlepkin","doi":"10.1007/s10469-023-09725-y","DOIUrl":null,"url":null,"abstract":"<p>A group <i>G</i> is called a Shunkov group (a conjugate biprimitive finite group) if, for any of its finite subgroups <i>H</i> in the factor group <i>N</i><sub><i>G</i></sub>(<i>H</i>)/<i>H</i>, every two conjugate elements of prime order generate a finite subgroup. We say that a group is saturated with groups from the set 𝔐 if any finite subgroup of the given group is contained in its subgroup isomorphic to some group in 𝔐. We show that a Shunkov group <i>G</i> which is saturated with groups from the set 𝔐 possessing specific properties, and contains an involution <i>z</i> with the property that the centralizer <i>C</i><sub><i>G</i></sub>(<i>z</i>) has only finitely many elements of finite order will have a periodic part isomorphic to one of the groups in 𝔐. In particular, a Shunkov group <i>G</i> that is saturated with finite almost simple groups and contains an involution <i>z</i> with the property that the centralizer <i>C</i><sub><i>G</i></sub>(<i>z</i>) has only finitely many elements of finite order will have a periodic part isomorphic to a finite almost simple group.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-023-09725-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

A group G is called a Shunkov group (a conjugate biprimitive finite group) if, for any of its finite subgroups H in the factor group NG(H)/H, every two conjugate elements of prime order generate a finite subgroup. We say that a group is saturated with groups from the set 𝔐 if any finite subgroup of the given group is contained in its subgroup isomorphic to some group in 𝔐. We show that a Shunkov group G which is saturated with groups from the set 𝔐 possessing specific properties, and contains an involution z with the property that the centralizer CG(z) has only finitely many elements of finite order will have a periodic part isomorphic to one of the groups in 𝔐. In particular, a Shunkov group G that is saturated with finite almost simple groups and contains an involution z with the property that the centralizer CG(z) has only finitely many elements of finite order will have a periodic part isomorphic to a finite almost simple group.

几乎简单群饱和的 Shunkov 群
如果对于因子群 NG(H)/H 中的任意有限子群 H,每两个素阶共轭元素都生成一个有限子群,那么群 G 就叫做舒恩科夫群(共轭双元有限群)。如果给定群的任何有限子群都包含在与𝔐 中的某个群同构的子群中,我们就说这个群被来自集合 𝔐 的群所饱和。我们将证明,如果一个 Shunkov 群 G 饱和了集合 𝔐 中具有特定性质的群,并且包含一个具有中心子 CG(z) 只有有限多个有限阶元素这一性质的内卷 z,那么它将有一个周期部分与𝔐 中的一个群同构。特别是,一个饱和有限近乎简单群并包含具有中心子 CG(z) 只有有限多个有限阶元素这一性质的卷积 z 的 Shunkov 群 G,其周期部分将与一个有限近乎简单群同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信