A reverse Minkowski theorem | Annals of Mathematics

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Oded Regev, Noah Stephens-Davidowitz
{"title":"A reverse Minkowski theorem | Annals of Mathematics","authors":"Oded Regev, Noah Stephens-Davidowitz","doi":"10.4007/annals.2024.199.1.1","DOIUrl":null,"url":null,"abstract":"<p>We prove a conjecture due to Dadush, showing that if $\\mathcal{L} \\subset \\mathbb{R}^n$ is a lattice such that $\\mathrm{det}(\\mathcal{L}’)\\ge 1$ for all sublattices $\\mathcal{L}’ \\subseteq \\mathcal{L}$, then $\\sum_{\\mathbf{y}\\in \\mathcal{L}} e^{-\\pi t^2 \\|\\mathbf{y} \\|^2} \\le 3/2$, where $t := 10(\\log n + 2)$. From this we derive bounds on the number of short lattice vectors, which can be viewed as a partial converse to Minkowski’s celebrated first theorem. We also derive a bound on the covering radius.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.1.1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a conjecture due to Dadush, showing that if $\mathcal{L} \subset \mathbb{R}^n$ is a lattice such that $\mathrm{det}(\mathcal{L}’)\ge 1$ for all sublattices $\mathcal{L}’ \subseteq \mathcal{L}$, then $\sum_{\mathbf{y}\in \mathcal{L}} e^{-\pi t^2 \|\mathbf{y} \|^2} \le 3/2$, where $t := 10(\log n + 2)$. From this we derive bounds on the number of short lattice vectors, which can be viewed as a partial converse to Minkowski’s celebrated first theorem. We also derive a bound on the covering radius.

反向闵科夫斯基定理 | 数学年鉴
我们证明了由达杜什提出的一个猜想,即如果 $\mathcal{L}\子集 $\mathbb{R}^n$ 是一个网格,使得 $\mathrm{det}(\mathcal{L}')\ge 1$ 对于所有子网格 $\mathcal{L}' \subseteq \mathcal{L}$,那么 $\sum_{\mathbf{y}\in \mathcal{L}} e^{-\pi t^2 \|\mathbf{y}|^2}。\|^2}\le 3/2$, 其中 $t := 10(\log n + 2)$.由此我们推导出短网格向量数的边界,这可以看作是闵科夫斯基著名的第一定理的部分逆定理。我们还推导出了覆盖半径的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信