Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid | Annals of Mathematics

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant
{"title":"Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid | Annals of Mathematics","authors":"Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant","doi":"10.4007/annals.2024.199.1.4","DOIUrl":null,"url":null,"abstract":"<p>We design an FPRAS to count the number of bases of any matroid given by an independent set oracle, and to estimate the partition function of the random cluster model of any matroid in the regime where $0\\lt q\\lt 1$. Consequently, we can sample random spanning forests in a graph and estimate the reliability polynomial of any matroid. We also prove the thirty year old conjecture of Mihail and Vazirani that the bases exchange graph of any matroid has edge expansion at least 1.</p>\n<p>Our algorithm and proof build on the recent results of Dinur, Kaufman, Mass and Oppenheim who show that a high-dimensional walk on a weighted simplicial complex mixes rapidly if for every link of the complex, the corresponding localized random walk on the 1-skeleton is a strong spectral expander. One of our key observations is that a weighted simplicial complex $X$ is a $0$-local spectral expander if and only if a naturally associated generating polynomial $p_{X}$ is strongly log-concave. More generally, to every pure simplicial complex $X$ with positive weights on its maximal faces, we can associate a multiaffine homogeneous polynomial $p_{X}$ such that the eigenvalues of the localized random walks on $X$ correspond to the eigenvalues of the Hessian of derivatives of $p_{X}$.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.1.4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We design an FPRAS to count the number of bases of any matroid given by an independent set oracle, and to estimate the partition function of the random cluster model of any matroid in the regime where $0\lt q\lt 1$. Consequently, we can sample random spanning forests in a graph and estimate the reliability polynomial of any matroid. We also prove the thirty year old conjecture of Mihail and Vazirani that the bases exchange graph of any matroid has edge expansion at least 1.

Our algorithm and proof build on the recent results of Dinur, Kaufman, Mass and Oppenheim who show that a high-dimensional walk on a weighted simplicial complex mixes rapidly if for every link of the complex, the corresponding localized random walk on the 1-skeleton is a strong spectral expander. One of our key observations is that a weighted simplicial complex $X$ is a $0$-local spectral expander if and only if a naturally associated generating polynomial $p_{X}$ is strongly log-concave. More generally, to every pure simplicial complex $X$ with positive weights on its maximal faces, we can associate a multiaffine homogeneous polynomial $p_{X}$ such that the eigenvalues of the localized random walks on $X$ correspond to the eigenvalues of the Hessian of derivatives of $p_{X}$.

对数凹多项式 II:高维行走和计算矩阵基的 FPRAS | 数学年鉴
我们设计了一种 FPRAS,用于计算由独立集神谕给出的任意 matroid 的基数,并估计任意 matroid 在 $0\lt q\lt 1$ 机制下的随机聚类模型的分区函数。因此,我们可以对图中的随机生成林进行采样,并估计任意 matroid 的可靠性多项式。我们的算法和证明建立在 Dinur、Kaufman、Mass 和 Oppenheim 的最新成果之上,他们证明了如果对于复数的每个链接,1-骨架上相应的局部随机行走是一个强谱扩展器,那么加权单纯复数上的高维行走就会快速混合。我们的一个重要发现是,当且仅当一个自然相关的生成多项式 $p_{X}$ 是强对数凹的时候,加权单纯复数 $X$ 是一个 $0$ 的局部谱扩展器。更一般地说,对于每个在最大面上具有正权重的纯简复数 $X$,我们都可以关联一个多频均质多项式 $p_{X}$,从而使 $X$ 上局部随机游走的特征值与 $p_{X}$ 的导数 Hessian 的特征值相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信