Purity for flat cohomology | Annals of Mathematics

IF 5.7 1区 数学 Q1 MATHEMATICS
Kęstutis Česnavičius, Peter Scholze
{"title":"Purity for flat cohomology | Annals of Mathematics","authors":"Kęstutis Česnavičius, Peter Scholze","doi":"10.4007/annals.2024.199.1.2","DOIUrl":null,"url":null,"abstract":"<p>We establish the flat cohomology version of the Gabber–Thomason purity for étale cohomology: for a complete intersection Noetherian local ring $(R, \\mathfrak {m})$ and a commutative, finite, flat $R$-group $G$, the flat cohomology $H^i_\\mathfrak {m}(R, G)$ vanishes for for $i \\le \\mathrm{dim}(R)$. For small $i$, this settles conjectures of Gabber that extend the Grothendieck–Lefschetz theorem and give purity for the Brauer group for schemes with complete intersection singularities. For the proof, we reduce to a flat purity statement for perfectoid rings, establish $p$-complete arc descent for flat cohomology of perfectoids, and then relate to coherent cohomology of $\\mathbb {A}_{\\mathrm {Inf}}$ via prismatic Dieudonné theory. We also present an algebraic version of tilting for étale cohomology, use it to reprove the Gabber–Thomason purity, and exhibit general properties of fppf cohomology of (animated) rings with finite, locally free group scheme coefficients, such as excision, agreement with fpqc cohomology, and continuity.</p>\n<p></p>","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"97 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.1.2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish the flat cohomology version of the Gabber–Thomason purity for étale cohomology: for a complete intersection Noetherian local ring $(R, \mathfrak {m})$ and a commutative, finite, flat $R$-group $G$, the flat cohomology $H^i_\mathfrak {m}(R, G)$ vanishes for for $i \le \mathrm{dim}(R)$. For small $i$, this settles conjectures of Gabber that extend the Grothendieck–Lefschetz theorem and give purity for the Brauer group for schemes with complete intersection singularities. For the proof, we reduce to a flat purity statement for perfectoid rings, establish $p$-complete arc descent for flat cohomology of perfectoids, and then relate to coherent cohomology of $\mathbb {A}_{\mathrm {Inf}}$ via prismatic Dieudonné theory. We also present an algebraic version of tilting for étale cohomology, use it to reprove the Gabber–Thomason purity, and exhibit general properties of fppf cohomology of (animated) rings with finite, locally free group scheme coefficients, such as excision, agreement with fpqc cohomology, and continuity.

平面同调的纯度 | 数学年鉴
我们建立了伽伯-托马森纯度的平同调版本:对于完全交点诺特局部环 $(R, \mathfrak {m})$和交换、有限、平 $R$- 群 $G$,平同调 $H^i_\mathfrak {m}(R,G)$在 $i \le \mathrm{dim}(R)$ 时消失。对于较小的 $i$,这解决了加伯尔的猜想,即扩展格罗内迪克-勒夫谢茨定理,并给出具有完全交点奇点的方案的布劳尔群的纯度。为了证明这一点,我们还原了完形环的平面纯度声明,为完形的平面同调建立了 $p$ 完整的弧降,然后通过棱柱迪厄多内理论将其与 $\mathbb {A}_{\mathrm {Inf}}$ 的相干同调联系起来。我们还提出了一个倾斜的代数版本的 étale cohomology,用它来重新证明 Gabber-Thomason 纯度,并展示了具有有限局部自由群方案系数的(动画)环的 fppf cohomology 的一般性质,如切除、与 fpqc cohomology 一致和连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信