Unveiling chiral phases: Finite-size scaling as a probe of quantum phase transition in symmetry-enriched $c=1$ conformal field theories

Chenan Wei, Vagharsh V. Mkhitaryan, Tigran A. Sedrakyan
{"title":"Unveiling chiral phases: Finite-size scaling as a probe of quantum phase transition in symmetry-enriched $c=1$ conformal field theories","authors":"Chenan Wei, Vagharsh V. Mkhitaryan, Tigran A. Sedrakyan","doi":"arxiv-2312.16660","DOIUrl":null,"url":null,"abstract":"We study the low-energy properties of the chiral Heisenberg chain, namely, a\none-dimensional spin-1/2 isotropic Heisenberg chain with time-reversal\nsymmetry-breaking pseudo-scalar chiral interaction. We employ the thermodynamic\nBethe ansatz to find \"chiralization\", the response of the ground state versus\nthe strength of the chiral interaction of a chiral Heisenberg chain. Unlike the\nmagnetization case, the chirality of the ground state remains zero until the\ntransition point corresponding to critical coupling $\\alpha_c=2J/\\pi$ with $J$\nbeing the antiferromagnetic spin-exchange interaction. The central-charge $c=1$\nconformal field theories (CFTs) describe the two phases with zero and finite\nchirality. We suggest that the difference lies in the symmetry of their ground\nstate (lightest weight) primary fields, i.e., the two phases are\nsymmetry-enriched CFTs. At finite but small temperatures, the non-chiral\nHeisenberg phase acquires a finite chirality that scales with the temperature\nquadratically. We show that the finite-size effect around the transition point\nprobes the transition.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.16660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the low-energy properties of the chiral Heisenberg chain, namely, a one-dimensional spin-1/2 isotropic Heisenberg chain with time-reversal symmetry-breaking pseudo-scalar chiral interaction. We employ the thermodynamic Bethe ansatz to find "chiralization", the response of the ground state versus the strength of the chiral interaction of a chiral Heisenberg chain. Unlike the magnetization case, the chirality of the ground state remains zero until the transition point corresponding to critical coupling $\alpha_c=2J/\pi$ with $J$ being the antiferromagnetic spin-exchange interaction. The central-charge $c=1$ conformal field theories (CFTs) describe the two phases with zero and finite chirality. We suggest that the difference lies in the symmetry of their ground state (lightest weight) primary fields, i.e., the two phases are symmetry-enriched CFTs. At finite but small temperatures, the non-chiral Heisenberg phase acquires a finite chirality that scales with the temperature quadratically. We show that the finite-size effect around the transition point probes the transition.
揭示手性相:有限尺寸缩放作为对称富集的 c=1$ 共形场理论中量子相变的探测器
我们研究了手性海森堡链的低能特性,即具有打破时间逆对称性的伪标量手性相互作用的一维自旋-1/2 各向同性海森堡链。我们利用热力学贝特方差来寻找 "手性化",即基态对手性海森堡链手性相互作用强度的响应。与磁化情况不同,基态的手性在临界耦合$\alpha_c=2J/\pi$($J$为反铁磁自旋交换相互作用)对应的转换点之前一直为零。中心电荷 $c=1$ 共形场论(CFT)描述了具有零和有限奇异性的两个阶段。我们认为,区别在于它们基态(最轻量级)主场的对称性,即这两个相是对称性富集的 CFT。在有限但较小的温度下,非手性海森堡相获得了有限的手性,这种手性与温度呈正比。我们证明,过渡点附近的有限尺寸效应预示了这一过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信