N. K. Khristoforova, A. V. Litvinenko, M. Yu. Alekseev, V. Yu. Tsygankov
{"title":"Trace Element Сontent in the Pink Salmon from the Rivers of the Basins of the Barents Sea and Sea of Okhotsk","authors":"N. K. Khristoforova, A. V. Litvinenko, M. Yu. Alekseev, V. Yu. Tsygankov","doi":"10.1134/s2075111723040070","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The concentrations of Pb, Cd, Ni, Cu, and Zn were determined in the invasive pink salmon that came to spawn into the Kola and Tuloma rivers of the Kola Peninsula, flowing into the Barents Sea, in July 2019. The content of trace elements in the organs and tissues of pink salmon introduced in the Euro-Arctic waters of Russia was compared to those of the pink salmon from its native range, which returned to spawn in the rivers of the Sakhalin and Iturup islands in 2016–2018. It has been established that concentrations of Zn, Cu, and Ni noticeably predominate in all organs and tissues of introduced pink salmon, whereas Pb and Cd predominate in the Sea of Okhotsk pink salmon. Obviously, the differences in the microelement composition in fish are caused by environmental conditions. In the Barents Sea, they are formed under the influence of the Gulf Stream, as well as the anthropogenic impact of the Kola Peninsula, which is characterized by the extraction, processing, and smelting of a number of metals, primarily Ni and Cu, as well as Zn. In the Sakhalin-Kuril basin, the specificity of the environment and the microelement composition of salmon are due to the influence of natural factors—volcanism and upwellings. Schools of pink salmon during feeding and migration in the Pacific Ocean cross a high-nutrient and at the same time geochemically impact natural zone formed by the Kuril Ridge and the Kuril-Kamchatka Depression, which supplies chemical elements to surface waters. Here, the concentration of Pb is most markedly increased in fish. The development of the introduced pink salmon in the new area is facilitated by the recent increase in temperature in the waters of the North Atlantic, so the amount of fish production in it will increase. The mastering of pink salmon in new feeding places sets before scientists the task of monitoring the dynamics of its abundance and taking adequate measures for fishery regulation and fish quality control.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2075111723040070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The concentrations of Pb, Cd, Ni, Cu, and Zn were determined in the invasive pink salmon that came to spawn into the Kola and Tuloma rivers of the Kola Peninsula, flowing into the Barents Sea, in July 2019. The content of trace elements in the organs and tissues of pink salmon introduced in the Euro-Arctic waters of Russia was compared to those of the pink salmon from its native range, which returned to spawn in the rivers of the Sakhalin and Iturup islands in 2016–2018. It has been established that concentrations of Zn, Cu, and Ni noticeably predominate in all organs and tissues of introduced pink salmon, whereas Pb and Cd predominate in the Sea of Okhotsk pink salmon. Obviously, the differences in the microelement composition in fish are caused by environmental conditions. In the Barents Sea, they are formed under the influence of the Gulf Stream, as well as the anthropogenic impact of the Kola Peninsula, which is characterized by the extraction, processing, and smelting of a number of metals, primarily Ni and Cu, as well as Zn. In the Sakhalin-Kuril basin, the specificity of the environment and the microelement composition of salmon are due to the influence of natural factors—volcanism and upwellings. Schools of pink salmon during feeding and migration in the Pacific Ocean cross a high-nutrient and at the same time geochemically impact natural zone formed by the Kuril Ridge and the Kuril-Kamchatka Depression, which supplies chemical elements to surface waters. Here, the concentration of Pb is most markedly increased in fish. The development of the introduced pink salmon in the new area is facilitated by the recent increase in temperature in the waters of the North Atlantic, so the amount of fish production in it will increase. The mastering of pink salmon in new feeding places sets before scientists the task of monitoring the dynamics of its abundance and taking adequate measures for fishery regulation and fish quality control.