{"title":"Nonabelian level structures, Nielsen equivalence, and Markoff triples | Annals of Mathematics","authors":"William Y. Chen","doi":"10.4007/annals.2024.199.1.5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we establish a congruence on the degree of the map from a component of a Hurwitz space of covers of elliptic curves to the moduli stack of elliptic curves. Combinatorially, this can be expressed as a congruence on the cardinalities of Nielsen equivalence classes of generating pairs of finite groups. Building on the work of Bourgain, Gamburd, and Sarnak, we apply this congruence to show that for all but finitely many primes $p$, the group of Markoff automorphisms acts transitively on the non-zero $\\mathbb {F}_p$-points of the Markoff equation $x^2 + y^2 + z^2 – 3xyz = 0$. This yields a strong approximation property for the Markoff equation, the finiteness of congruence conditions satisfied by Markoff numbers, and the connectivity of a certain infinite family of Hurwitz spaces of $\\mathrm {SL}_2(\\mathbb {F}_p)$-covers of elliptic curves. With possibly finitely many exceptions, this resolves a conjecture of Bourgain, Gamburd, and Sarnak, first posed by Baragar in 1991, and a question of Frobenius, posed in 1913. Since their methods are effective, this reduces the conjecture to a finite computation.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2024.199.1.5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we establish a congruence on the degree of the map from a component of a Hurwitz space of covers of elliptic curves to the moduli stack of elliptic curves. Combinatorially, this can be expressed as a congruence on the cardinalities of Nielsen equivalence classes of generating pairs of finite groups. Building on the work of Bourgain, Gamburd, and Sarnak, we apply this congruence to show that for all but finitely many primes $p$, the group of Markoff automorphisms acts transitively on the non-zero $\mathbb {F}_p$-points of the Markoff equation $x^2 + y^2 + z^2 – 3xyz = 0$. This yields a strong approximation property for the Markoff equation, the finiteness of congruence conditions satisfied by Markoff numbers, and the connectivity of a certain infinite family of Hurwitz spaces of $\mathrm {SL}_2(\mathbb {F}_p)$-covers of elliptic curves. With possibly finitely many exceptions, this resolves a conjecture of Bourgain, Gamburd, and Sarnak, first posed by Baragar in 1991, and a question of Frobenius, posed in 1913. Since their methods are effective, this reduces the conjecture to a finite computation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.