Nikolaos Papalazarou, Ioannis Lefkos, Nikolaos Fachantidis
{"title":"The Effect of Physical and Virtual Inquiry-Based Experiments on Students’ Attitudes and Learning","authors":"Nikolaos Papalazarou, Ioannis Lefkos, Nikolaos Fachantidis","doi":"10.1007/s10956-023-10088-3","DOIUrl":null,"url":null,"abstract":"<p>Involving students in laboratory and inquiry-based activities can help them understand the concepts of physics. However the learning process should not only focus on the concepts. Moreover, the advantages of using virtual or physical labs are still under examination. The purpose of this study is to analyse which of the two modes (virtual or physical) is the most effective for high-school students, in terms of conceptual understanding and attitudes. The criteria for this comparison are (a) the contribution of these two modes to the improvement of conceptual understanding and (b) the students’ attitudes towards both modes of laboratory. The participants were high-school students of 3rd grade in two different groups. For the purpose of the study, four educational scenarios were created: two in the field of Mechanics and two in that of Electricity. The study revealed no statistically significant difference regarding students’ experimenting in either lab mode. Moreover, students’ attitudes towards both virtual and physical labs were similarly positive. We assume that these results may contribute to a broader perspective on choosing the lab mode when designing activities, given the fact that both the understanding and attitudes of the students are similar in the cases examined. Thus, the final choice of modality should be based on other factors, such as the adequacy of equipment, the educational conditions (e.g. distance education) and the specific learning goals set by the teacher.</p>","PeriodicalId":50057,"journal":{"name":"Journal of Science Education and Technology","volume":"78 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science Education and Technology","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s10956-023-10088-3","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Involving students in laboratory and inquiry-based activities can help them understand the concepts of physics. However the learning process should not only focus on the concepts. Moreover, the advantages of using virtual or physical labs are still under examination. The purpose of this study is to analyse which of the two modes (virtual or physical) is the most effective for high-school students, in terms of conceptual understanding and attitudes. The criteria for this comparison are (a) the contribution of these two modes to the improvement of conceptual understanding and (b) the students’ attitudes towards both modes of laboratory. The participants were high-school students of 3rd grade in two different groups. For the purpose of the study, four educational scenarios were created: two in the field of Mechanics and two in that of Electricity. The study revealed no statistically significant difference regarding students’ experimenting in either lab mode. Moreover, students’ attitudes towards both virtual and physical labs were similarly positive. We assume that these results may contribute to a broader perspective on choosing the lab mode when designing activities, given the fact that both the understanding and attitudes of the students are similar in the cases examined. Thus, the final choice of modality should be based on other factors, such as the adequacy of equipment, the educational conditions (e.g. distance education) and the specific learning goals set by the teacher.
期刊介绍:
Journal of Science Education and Technology is an interdisciplinary forum for the publication of original peer-reviewed, contributed and invited research articles of the highest quality that address the intersection of science education and technology with implications for improving and enhancing science education at all levels across the world. Topics covered can be categorized as disciplinary (biology, chemistry, physics, as well as some applications of computer science and engineering, including the processes of learning, teaching and teacher development), technological (hardware, software, deigned and situated environments involving applications characterized as with, through and in), and organizational (legislation, administration, implementation and teacher enhancement). Insofar as technology plays an ever-increasing role in our understanding and development of science disciplines, in the social relationships among people, information and institutions, the journal includes it as a component of science education. The journal provides a stimulating and informative variety of research papers that expand and deepen our theoretical understanding while providing practice and policy based implications in the anticipation that such high-quality work shared among a broad coalition of individuals and groups will facilitate future efforts.