Contrastive learning through non-equilibrium memory

Martin Falk, Adam Strupp, Benjamin Scellier, Arvind Murugan
{"title":"Contrastive learning through non-equilibrium memory","authors":"Martin Falk, Adam Strupp, Benjamin Scellier, Arvind Murugan","doi":"arxiv-2312.17723","DOIUrl":null,"url":null,"abstract":"Learning algorithms based on backpropagation have enabled transformative\ntechnological advances but alternatives based on local energy-based rules offer\nbenefits in terms of biological plausibility and decentralized training. A\nbroad class of such local learning rules involve \\textit{contrasting} a clamped\nconfiguration with the free, spontaneous behavior of the system. However,\ncomparisons of clamped and free configurations require explicit memory or\nswitching between Hebbian and anti-Hebbian modes. Here, we show how a simple\nform of implicit non-equilibrium memory in the update dynamics of each\n``synapse'' of a network naturally allows for contrastive learning. During\ntraining, free and clamped behaviors are shown in sequence over time using a\nsawtooth-like temporal protocol that breaks the symmetry between those two\nbehaviors when combined with non-equilibrium update dynamics at each synapse.\nWe show that the needed dynamics is implicit in integral feedback control,\nbroadening the range of physical and biological systems naturally capable of\ncontrastive learning. Finally, we show that non-equilibrium dissipation\nimproves learning quality and determine the Landauer energy cost of contrastive\nlearning through physical dynamics.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.17723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning algorithms based on backpropagation have enabled transformative technological advances but alternatives based on local energy-based rules offer benefits in terms of biological plausibility and decentralized training. A broad class of such local learning rules involve \textit{contrasting} a clamped configuration with the free, spontaneous behavior of the system. However, comparisons of clamped and free configurations require explicit memory or switching between Hebbian and anti-Hebbian modes. Here, we show how a simple form of implicit non-equilibrium memory in the update dynamics of each ``synapse'' of a network naturally allows for contrastive learning. During training, free and clamped behaviors are shown in sequence over time using a sawtooth-like temporal protocol that breaks the symmetry between those two behaviors when combined with non-equilibrium update dynamics at each synapse. We show that the needed dynamics is implicit in integral feedback control, broadening the range of physical and biological systems naturally capable of contrastive learning. Finally, we show that non-equilibrium dissipation improves learning quality and determine the Landauer energy cost of contrastive learning through physical dynamics.
通过非平衡记忆进行对比学习
基于反向传播的学习算法带来了变革性的技术进步,但基于基于局部能量的规则的替代方案则在生物合理性和分散训练方面提供了优势。这类局部学习规则的另一个类别是将箝位配置与系统的自由、自发行为进行对比。然而,钳制配置和自由配置的比较需要显式记忆,或者在希比模式和反希比模式之间切换。在这里,我们展示了在网络的每个 "突触 "的更新动态中,隐式非平衡记忆的简单形式是如何自然地实现对比学习的。在训练过程中,自由行为和钳制行为会随着时间的推移依次出现,使用类似于awtooth的时间协议,当与每个突触的非平衡更新动力学相结合时,就会打破这两种行为之间的对称性。最后,我们证明了非平衡耗散能提高学习质量,并通过物理动力学确定了对比学习的兰道尔能量成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信