Predictions of Spartina alterniflora leaf functional traits based on hyperspectral data and machine learning models

IF 3.7 4区 地球科学 Q2 REMOTE SENSING
Wei Li, Xueyan Zuo, Zhijun Liu, Leichao Nie, Huazhe Li, Junjie Wang, Zhiguo Dou, Yang Cai, Xiajie Zhai, Lijuan Cui
{"title":"Predictions of Spartina alterniflora leaf functional traits based on hyperspectral data and machine learning models","authors":"Wei Li, Xueyan Zuo, Zhijun Liu, Leichao Nie, Huazhe Li, Junjie Wang, Zhiguo Dou, Yang Cai, Xiajie Zhai, Lijuan Cui","doi":"10.1080/22797254.2023.2294951","DOIUrl":null,"url":null,"abstract":"Investigating the functional traits of Spartina alterniflora can provide insights towards understanding its invasion mechanism, and developing a method leaves can improve its management in coastal ...","PeriodicalId":49077,"journal":{"name":"European Journal of Remote Sensing","volume":"25 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/22797254.2023.2294951","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the functional traits of Spartina alterniflora can provide insights towards understanding its invasion mechanism, and developing a method leaves can improve its management in coastal ...
基于高光谱数据和机器学习模型的互叶女贞叶片功能特征预测
研究互花叶斯巴达的功能特征有助于了解其入侵机制,并开发一种方法来改善其在沿海地区的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
2.50%
发文量
51
审稿时长
>12 weeks
期刊介绍: European Journal of Remote Sensing publishes research papers and review articles related to the use of remote sensing technologies. The Journal welcomes submissions on all applications related to the use of active or passive remote sensing to terrestrial, oceanic, and atmospheric environments. The most common thematic areas covered by the Journal include: -land use/land cover -geology, earth and geoscience -agriculture and forestry -geography and landscape -ecology and environmental science -support to land management -hydrology and water resources -atmosphere and meteorology -oceanography -new sensor systems, missions and software/algorithms -pre processing/calibration -classifications -time series/change analysis -data integration/merging/fusion -image processing and analysis -modelling European Journal of Remote Sensing is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read anywhere, at any time, immediately on publication. There are no charges for submission to this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信