Maciej Błaszak, Błażej M. Szablikowski, Krzysztof Marciniak
{"title":"Stäckel representations of stationary Kdv systems","authors":"Maciej Błaszak, Błażej M. Szablikowski, Krzysztof Marciniak","doi":"10.1016/s0034-4877(23)00083-6","DOIUrl":null,"url":null,"abstract":"<p>In this article we study Stäckel representations of stationary KdV systems<span>. Using Lax formalism we prove that these systems have two different representations as separable Stäckel systems of Benenti type, related with different foliations of the stationary manifold. We do it by constructing an explicit transformation between the jet coordinates of stationary KdV systems and separation variables of the corresponding Benenti systems for arbitrary number of degrees of freedom. Moreover, on the stationary manifold, we present the explicit form of Miura map between both representations of stationary KdV systems, which also yields their bi-Hamiltonian formulation.</span></p>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/s0034-4877(23)00083-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this article we study Stäckel representations of stationary KdV systems. Using Lax formalism we prove that these systems have two different representations as separable Stäckel systems of Benenti type, related with different foliations of the stationary manifold. We do it by constructing an explicit transformation between the jet coordinates of stationary KdV systems and separation variables of the corresponding Benenti systems for arbitrary number of degrees of freedom. Moreover, on the stationary manifold, we present the explicit form of Miura map between both representations of stationary KdV systems, which also yields their bi-Hamiltonian formulation.
期刊介绍:
Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.