Bin Yue, Jianhua Wang, Shanshan Liu, Guangjun Wu, Bin Qin, Landong Li
{"title":"Efficient nitric oxide capture and reduction on Ni-loaded CHA zeolites","authors":"Bin Yue, Jianhua Wang, Shanshan Liu, Guangjun Wu, Bin Qin, Landong Li","doi":"10.1016/j.gee.2023.12.005","DOIUrl":null,"url":null,"abstract":"<p>As a prominent contributor to air pollution, nitric oxide (NO) has emerged as a critical agent causing detrimental environmental and health ramifications. To mitigate emissions and facilitate downstream utilization, adsorption-based techniques offer a compelling approach for direct NO capture from both stationary and mobile sources. In this study, a comprehensive exploration of NO capture under oxygen-lean and oxygen-rich conditions was conducted, employing Ni ion-exchanged chabazite (CHA-type) zeolites as the adsorbents. Remarkably, Ni/Na-CHA zeolites, with Ni loadings ranging from 3 to 4 wt%, demonstrate remarkable dynamic uptake capacities and exhibit exceptional NO capture efficiencies (NO-to-Ni ratio) for both oxygen-lean (0.17–0.31 mmol/g, 0.32–0.43 of NO/Ni) and oxygen-rich (1.64–1.18 mmol/g) under ambient conditions. An NH<sub>3</sub> reduction methodology was designed for the regeneration of absorbents at a relatively low temperature of 673 K. Comprehensive insights into the NO<sub><em>x</em></sub> adsorption mechanism were obtained through temperature-programmed desorption experiments, <em>in situ</em> Fourier transform infrared spectroscopy, and density functional theory calculations. It is unveiled that NO and NO<sub>2</sub> exhibit propensity to coordinate with Ni<sup>2+</sup> <em>via</em> N-terminal or O-terminal, yielding thermally stable complexes and metastable species, respectively, while the low-temperature desorption substances are generated in close proximity to Na<sup>+</sup>. This study not only offers micro-level perspectives but imparts crucial insights for the advancement of capture and reduction technologies utilizing precious-metal-free materials.</p>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"261 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2023.12.005","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a prominent contributor to air pollution, nitric oxide (NO) has emerged as a critical agent causing detrimental environmental and health ramifications. To mitigate emissions and facilitate downstream utilization, adsorption-based techniques offer a compelling approach for direct NO capture from both stationary and mobile sources. In this study, a comprehensive exploration of NO capture under oxygen-lean and oxygen-rich conditions was conducted, employing Ni ion-exchanged chabazite (CHA-type) zeolites as the adsorbents. Remarkably, Ni/Na-CHA zeolites, with Ni loadings ranging from 3 to 4 wt%, demonstrate remarkable dynamic uptake capacities and exhibit exceptional NO capture efficiencies (NO-to-Ni ratio) for both oxygen-lean (0.17–0.31 mmol/g, 0.32–0.43 of NO/Ni) and oxygen-rich (1.64–1.18 mmol/g) under ambient conditions. An NH3 reduction methodology was designed for the regeneration of absorbents at a relatively low temperature of 673 K. Comprehensive insights into the NOx adsorption mechanism were obtained through temperature-programmed desorption experiments, in situ Fourier transform infrared spectroscopy, and density functional theory calculations. It is unveiled that NO and NO2 exhibit propensity to coordinate with Ni2+via N-terminal or O-terminal, yielding thermally stable complexes and metastable species, respectively, while the low-temperature desorption substances are generated in close proximity to Na+. This study not only offers micro-level perspectives but imparts crucial insights for the advancement of capture and reduction technologies utilizing precious-metal-free materials.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.