{"title":"Correction to deep reinforcement learning-based ordering mechanism for performance optimization in multi-echelon supply chains","authors":"Dony S. Kurian, V. Madhusudanan Pillai","doi":"10.1002/asmb.2838","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses and acknowledges the valuable feedback provided by Dr. Deniz Preil in response to the recent study conducted by Kurian et al which investigates the application of proximal policy optimization (PPO) to determine dynamic ordering policies within multi-echelon supply chains. The first comment raised by Dr. Preil motivated an examination of the training and evaluation procedures in Experiments 2, 3, and 4. The Experiments 2 and 3 were reworked to address this, allowing the seed to vary for every training iteration, resulting in refined outcomes while there was no need of reworking of Experiment 4. The second comment focused on the benchmarking strategies involving the 1-1 policy and the order-up-to (OUT) policy, clarifying the distinctions between the two policies and justifying the use of the 1-1 policy for benchmarking in Experiment 4. The implementation of the widely accepted OUT policy was explained, highlighting the meaningful rationale behind its use. These discussions aim to enhance the methodology employed by Kurian et al and strengthen the implications of the findings within the domain of supply chain ordering management.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2838","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses and acknowledges the valuable feedback provided by Dr. Deniz Preil in response to the recent study conducted by Kurian et al which investigates the application of proximal policy optimization (PPO) to determine dynamic ordering policies within multi-echelon supply chains. The first comment raised by Dr. Preil motivated an examination of the training and evaluation procedures in Experiments 2, 3, and 4. The Experiments 2 and 3 were reworked to address this, allowing the seed to vary for every training iteration, resulting in refined outcomes while there was no need of reworking of Experiment 4. The second comment focused on the benchmarking strategies involving the 1-1 policy and the order-up-to (OUT) policy, clarifying the distinctions between the two policies and justifying the use of the 1-1 policy for benchmarking in Experiment 4. The implementation of the widely accepted OUT policy was explained, highlighting the meaningful rationale behind its use. These discussions aim to enhance the methodology employed by Kurian et al and strengthen the implications of the findings within the domain of supply chain ordering management.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.