{"title":"Making waves in massive star asteroseismology","authors":"Dominic M. Bowman","doi":"10.1007/s10509-023-04262-7","DOIUrl":null,"url":null,"abstract":"<div><p>Massive stars play a major role not only in stellar evolution but also galactic evolution theory. This is because of their dynamical interaction with binary companions, but also because their strong winds and explosive deaths as supernovae provide chemical, radiative and kinematic feedback to their environments. Yet this feedback strongly depends on the physics of the supernova progenitor star. It is only in recent decades that asteroseismology – the study of stellar pulsations – has developed the necessary tools to a high level of sophistication to become a prime method at the forefront of astronomical research for constraining the physical processes at work within stellar interiors. For example, precise and accurate asteroseismic constraints on interior rotation, magnetic field strength and geometry, mixing and angular momentum transport processes of massive stars are becoming increasingly available across a wide range of masses. Moreover, ongoing large-scale time-series photometric surveys with space telescopes have revealed a large diversity in the variability of massive stars, including widespread coherent pulsations across a large range in mass and age, and the discovery of ubiquitous stochastic low-frequency (SLF) variability in their light curves. In this invited review, I discuss the progress made in understanding the physical processes at work within massive star interiors thanks to modern asteroseismic techniques, and conclude with a future outlook.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-023-04262-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-023-04262-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Massive stars play a major role not only in stellar evolution but also galactic evolution theory. This is because of their dynamical interaction with binary companions, but also because their strong winds and explosive deaths as supernovae provide chemical, radiative and kinematic feedback to their environments. Yet this feedback strongly depends on the physics of the supernova progenitor star. It is only in recent decades that asteroseismology – the study of stellar pulsations – has developed the necessary tools to a high level of sophistication to become a prime method at the forefront of astronomical research for constraining the physical processes at work within stellar interiors. For example, precise and accurate asteroseismic constraints on interior rotation, magnetic field strength and geometry, mixing and angular momentum transport processes of massive stars are becoming increasingly available across a wide range of masses. Moreover, ongoing large-scale time-series photometric surveys with space telescopes have revealed a large diversity in the variability of massive stars, including widespread coherent pulsations across a large range in mass and age, and the discovery of ubiquitous stochastic low-frequency (SLF) variability in their light curves. In this invited review, I discuss the progress made in understanding the physical processes at work within massive star interiors thanks to modern asteroseismic techniques, and conclude with a future outlook.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.