The Propagation Properties of a Lorentz–Gauss Vortex Beam in a Gradient-Index Medium

IF 1.8 4区 物理与天体物理 Q3 OPTICS
Mohammed S. Qusailah, Abdu A. Alkelly, Wafa’a A. Al-Bahry
{"title":"The Propagation Properties of a Lorentz–Gauss Vortex Beam in a Gradient-Index Medium","authors":"Mohammed S. Qusailah, Abdu A. Alkelly, Wafa’a A. Al-Bahry","doi":"10.1155/2023/3772408","DOIUrl":null,"url":null,"abstract":"Based on the Huygens–Fresnel integral and ABCD matrix, the propagation equation for the Lorentz–Gauss vortex beam (LGVB) in a gradient-index medium (GRIN) is rederived. The evolution of the intensity and phase distributions of an LGVB through a GRIN medium are numerically calculated as a function of the gradient-index parameter with changes in the incident beam parameters. The results showed that the propagation path and intensity distributions changed periodically with increasing propagation distance. In contrast, phase distributions change at multiples of <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.04 12.7178\" width=\"13.04pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.684,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"12.9951838 -9.28833 7.724 12.7178\" width=\"7.724pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,13.045,0)\"></path></g></svg></span> or <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 19.28 12.7178\" width=\"19.28pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.24,0)\"><use xlink:href=\"#g113-238\"></use></g><g transform=\"matrix(.013,0,0,-0.013,13.924,0)\"><use xlink:href=\"#g113-48\"></use></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"19.2351838 -9.28833 7.747 12.7178\" width=\"7.747pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.285,0)\"><use xlink:href=\"#g113-224\"></use></g></svg>,</span></span> depending on whether the <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 12.9526 8.68572\" width=\"12.9526pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> values are odd or even, respectively. At the same time, the parameters of the gradient index determine the periodic values of the Lorentz–Gauss vortex beams during propagation, and as <svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 7.68094 12.7178\" width=\"7.68094pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-224\"></use></g></svg> increased, the period of evolution decreased. The Lorentz–Gauss vortex beam propagating through the gradient index will develop from a square beam to a Gaussian vortex beam more quickly with an increase of <span><svg height=\"11.4899pt\" style=\"vertical-align:-5.52899pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 30.338 11.4899\" width=\"30.338pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.931,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,13.363,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,22.707,0)\"></path></g></svg><span></span><span><svg height=\"11.4899pt\" style=\"vertical-align:-5.52899pt\" version=\"1.1\" viewbox=\"33.9201838 -5.96091 19.434 11.4899\" width=\"19.434pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,33.97,0)\"><use xlink:href=\"#g113-120\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,42.9,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,47.332,3.132)\"></path></g></svg>.</span></span> In addition, the topological charge affects the size of the dark spot at the center of the beam and the size of the beam, causing the phase distributions to change periodically in the medium. This study is beneficial for laser optics and optical communications.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"74 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/3772408","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the Huygens–Fresnel integral and ABCD matrix, the propagation equation for the Lorentz–Gauss vortex beam (LGVB) in a gradient-index medium (GRIN) is rederived. The evolution of the intensity and phase distributions of an LGVB through a GRIN medium are numerically calculated as a function of the gradient-index parameter with changes in the incident beam parameters. The results showed that the propagation path and intensity distributions changed periodically with increasing propagation distance. In contrast, phase distributions change at multiples of or , depending on whether the values are odd or even, respectively. At the same time, the parameters of the gradient index determine the periodic values of the Lorentz–Gauss vortex beams during propagation, and as increased, the period of evolution decreased. The Lorentz–Gauss vortex beam propagating through the gradient index will develop from a square beam to a Gaussian vortex beam more quickly with an increase of . In addition, the topological charge affects the size of the dark spot at the center of the beam and the size of the beam, causing the phase distributions to change periodically in the medium. This study is beneficial for laser optics and optical communications.
洛伦兹-高斯涡旋光束在梯度指数介质中的传播特性
根据惠更斯-菲涅尔积分和 ABCD 矩阵,重新推导了洛伦兹-高斯涡旋光束(LGVB)在梯度指数介质(GRIN)中的传播方程。数值计算了 LGVB 在 GRIN 介质中的强度和相位分布随入射光束参数变化而随梯度指数参数变化的情况。结果表明,传播路径和强度分布随着传播距离的增加而发生周期性变化。与此相反,相位分布在或 的倍数上发生变化,这取决于数值是奇数还是偶数。同时,梯度指数参数决定了洛伦兹-高斯涡束在传播过程中的周期值,随着传播距离的增加,演化周期也随之缩短。此外,拓扑电荷会影响光束中心暗点的大小和光束的大小,从而导致相位分布在介质中发生周期性变化。这项研究对激光光学和光通信大有裨益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Optics
International Journal of Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
3.40
自引率
5.90%
发文量
28
审稿时长
13 weeks
期刊介绍: International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信