Standing Waves of Fractional Schrödinger Equations with Potentials and General Nonlinearities

IF 0.4 Q4 MATHEMATICS
Zaizheng Li,Qidi Zhang, Zhitao Zhang
{"title":"Standing Waves of Fractional Schrödinger Equations with Potentials and General Nonlinearities","authors":"Zaizheng Li,Qidi Zhang, Zhitao Zhang","doi":"10.4208/ata.oa-2022-0012","DOIUrl":null,"url":null,"abstract":"We study the existence of standing waves of fractional Schrödinger equations with a potential term and a general nonlinear term: $$iu_t − (−∆) ^su − V(x)u + f(u) = 0, (t, x) ∈ \\mathbb{R}_+ × \\mathbb{R}^N,$$ where $s ∈ (0, 1),$ $N > 2s$ is an integer and $V(x) ≤ 0$ is radial. More precisely, we\ninvestigate the minimizing problem with $L^2$-constraint: $$E(\\alpha)={\\rm inf}\\left\\{\\frac{1}{2}\\int_{\\mathbb{R}^N}|(-\\Delta)^{\\frac{s}{2}}u|^2+V(x)|u|^2-2F(|u|)\\mid u\\in H^s(\\mathbb{R}^N),||u||^2_{L^2(\\mathbb{R}^N)}=\\alpha\\right\\}.$$ Under general assumptions on the nonlinearity term $f(u)$ and the potential term $V(x),$ we prove that there exists a constant $α_0 ≥ 0$ such that $E(α)$ can be achieved for all $α > α_0,$ and there is no global minimizer with respect to $E(α)$ for all $0 < α < α_0.$ Moreover, we propose some criteria determining $α_0 = 0$ or $α_0 > 0.$","PeriodicalId":29763,"journal":{"name":"Analysis in Theory and Applications","volume":"33 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis in Theory and Applications","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4208/ata.oa-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of standing waves of fractional Schrödinger equations with a potential term and a general nonlinear term: $$iu_t − (−∆) ^su − V(x)u + f(u) = 0, (t, x) ∈ \mathbb{R}_+ × \mathbb{R}^N,$$ where $s ∈ (0, 1),$ $N > 2s$ is an integer and $V(x) ≤ 0$ is radial. More precisely, we investigate the minimizing problem with $L^2$-constraint: $$E(\alpha)={\rm inf}\left\{\frac{1}{2}\int_{\mathbb{R}^N}|(-\Delta)^{\frac{s}{2}}u|^2+V(x)|u|^2-2F(|u|)\mid u\in H^s(\mathbb{R}^N),||u||^2_{L^2(\mathbb{R}^N)}=\alpha\right\}.$$ Under general assumptions on the nonlinearity term $f(u)$ and the potential term $V(x),$ we prove that there exists a constant $α_0 ≥ 0$ such that $E(α)$ can be achieved for all $α > α_0,$ and there is no global minimizer with respect to $E(α)$ for all $0 < α < α_0.$ Moreover, we propose some criteria determining $α_0 = 0$ or $α_0 > 0.$
具有电位和一般非线性的分数薛定谔方程的驻波
我们研究了带有势项和一般非线性项的分数薛定谔方程驻波的存在性:$$iu_t - (-∆) ^su - V(x)u + f(u) = 0, (t, x) ∈ \mathbb{R}_+ × \mathbb{R}^N,$$其中$s∈ (0, 1), $N > 2s$为整数,$V(x) ≤ 0$为径向。更确切地说,我们研究的是带 $L^2$ 约束的最小化问题:$$E(\alpha)={\rm inf}\left\{\frac{1}{2}\int_{\mathbb{R}^N}|(-\Delta)^{\frac{s}{2}}u|^2+V(x)|u|^2-2F(|u|)\mid u\in H^s(\mathbb{R}^N),||u||^2_{L^2(\mathbb{R}^N)}=\alpha\right\}.$$ 在非线性项 $f(u)$ 和势项 $V(x) $ 的一般假设下,我们证明存在一个常数 $α_0 ≥ 0$,使得 $E(α)$ 在所有 $α > α_0 时都能实现,并且在所有 $0 < α < α_0 时都不存在关于 $E(α)$ 的全局最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
747
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信