{"title":"Standing Waves of Fractional Schrödinger Equations with Potentials and General Nonlinearities","authors":"Zaizheng Li,Qidi Zhang, Zhitao Zhang","doi":"10.4208/ata.oa-2022-0012","DOIUrl":null,"url":null,"abstract":"We study the existence of standing waves of fractional Schrödinger equations with a potential term and a general nonlinear term: $$iu_t − (−∆) ^su − V(x)u + f(u) = 0, (t, x) ∈ \\mathbb{R}_+ × \\mathbb{R}^N,$$ where $s ∈ (0, 1),$ $N > 2s$ is an integer and $V(x) ≤ 0$ is radial. More precisely, we\ninvestigate the minimizing problem with $L^2$-constraint: $$E(\\alpha)={\\rm inf}\\left\\{\\frac{1}{2}\\int_{\\mathbb{R}^N}|(-\\Delta)^{\\frac{s}{2}}u|^2+V(x)|u|^2-2F(|u|)\\mid u\\in H^s(\\mathbb{R}^N),||u||^2_{L^2(\\mathbb{R}^N)}=\\alpha\\right\\}.$$ Under general assumptions on the nonlinearity term $f(u)$ and the potential term $V(x),$ we prove that there exists a constant $α_0 ≥ 0$ such that $E(α)$ can be achieved for all $α > α_0,$ and there is no global minimizer with respect to $E(α)$ for all $0 < α < α_0.$ Moreover, we propose some criteria determining $α_0 = 0$ or $α_0 > 0.$","PeriodicalId":29763,"journal":{"name":"Analysis in Theory and Applications","volume":"33 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis in Theory and Applications","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4208/ata.oa-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the existence of standing waves of fractional Schrödinger equations with a potential term and a general nonlinear term: $$iu_t − (−∆) ^su − V(x)u + f(u) = 0, (t, x) ∈ \mathbb{R}_+ × \mathbb{R}^N,$$ where $s ∈ (0, 1),$ $N > 2s$ is an integer and $V(x) ≤ 0$ is radial. More precisely, we
investigate the minimizing problem with $L^2$-constraint: $$E(\alpha)={\rm inf}\left\{\frac{1}{2}\int_{\mathbb{R}^N}|(-\Delta)^{\frac{s}{2}}u|^2+V(x)|u|^2-2F(|u|)\mid u\in H^s(\mathbb{R}^N),||u||^2_{L^2(\mathbb{R}^N)}=\alpha\right\}.$$ Under general assumptions on the nonlinearity term $f(u)$ and the potential term $V(x),$ we prove that there exists a constant $α_0 ≥ 0$ such that $E(α)$ can be achieved for all $α > α_0,$ and there is no global minimizer with respect to $E(α)$ for all $0 < α < α_0.$ Moreover, we propose some criteria determining $α_0 = 0$ or $α_0 > 0.$