Existence and Concentration of Ground State Solutions for a Schrödinger–Poisson-Type System with Steep Potential Well

IF 1.9 3区 数学 Q1 MATHEMATICS
Jianwen Huang, Chunfang Chen, Chenggui Yuan
{"title":"Existence and Concentration of Ground State Solutions for a Schrödinger–Poisson-Type System with Steep Potential Well","authors":"Jianwen Huang, Chunfang Chen, Chenggui Yuan","doi":"10.1007/s12346-023-00920-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the following nonlocal problem in <span>\\(\\mathbb R^3\\)</span></p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u+(1+\\lambda V(x))u-\\mu \\phi u=f(x,u),&amp;{}\\quad \\text { in } {\\mathbb {R}}^3, \\\\ -\\Delta \\phi =u^2, &amp;{}\\quad \\text { in } {\\mathbb {R}}^3, \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(\\lambda &gt;0\\)</span> is a real parameter and <span>\\(\\mu &gt;0\\)</span> is small enough. Under some suitable assumptions on <i>V</i>(<i>x</i>) and <i>f</i>(<i>x</i>, <i>u</i>), we prove the existence of ground state solutions for the problem when <span>\\(\\lambda \\)</span> is large enough via variational methods. In addition, the concentration behavior of these ground state solutions is also investigated as <span>\\(\\lambda \\rightarrow +\\infty \\)</span>.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00920-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the following nonlocal problem in \(\mathbb R^3\)

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+(1+\lambda V(x))u-\mu \phi u=f(x,u),&{}\quad \text { in } {\mathbb {R}}^3, \\ -\Delta \phi =u^2, &{}\quad \text { in } {\mathbb {R}}^3, \end{array}\right. } \end{aligned}$$

where \(\lambda >0\) is a real parameter and \(\mu >0\) is small enough. Under some suitable assumptions on V(x) and f(xu), we prove the existence of ground state solutions for the problem when \(\lambda \) is large enough via variational methods. In addition, the concentration behavior of these ground state solutions is also investigated as \(\lambda \rightarrow +\infty \).

具有陡势井的薛定谔-泊松型系统的基态解的存在性和集中性
在本文中,我们研究了以下在(\mathbb R^3\)$$begin{aligned}{\left\{ \begin{array}{ll} -\Delta u+(1+\lambda V(x))u-\mu \phi u=f(x,u),&{}\quad \text { in },\ -\Delta \phi =u^2, &{}\quad \text { in }.{mathbb {R}}^3,\ -\Delta \phi =u^2, &{}\quad \text { in }{mathbb {R}^3,\end{array}\right.}\end{aligned}$ 其中 \(\lambda >0\) 是一个实数参数,并且 \(\mu >0\) 足够小。在对V(x)和f(x, u)的一些适当假设下,当\(\lambda \)足够大时,我们通过变分法证明了问题的基态解的存在。此外,我们还研究了这些基态解在 \(\lambda \rightarrow +\infty \) 时的集中行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信