{"title":"Automated Segmentation and Chord Length Distribution of Melt Pools in Complex 3D Printed Metal Artifacts","authors":"","doi":"10.1007/s40192-023-00329-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We present a new computational approach for large-scale segmentation and spatially-resolved analysis of melt pools in complex 3D printed parts and qualification artifacts. Our hybrid segmentation includes human-in-the-loop image processing of a few representative optical images of melt pools that are then used for training machine learning models for automated segmentation of melt pool boundaries in large parts. Our approach specifically targets minimizing the need for manual annotation. Considering imperfect segmentation and errors unavoidable with most algorithms, we further propose chord length distribution as a statistical description of melt pool sizes relatively tolerant to segmentation errors. We first show and validate our new approach on optical images of melt pools in a simple 3D printed plate sample (IN718 alloy) as well as selected regions of a complex qualification artifact (AlSi10Mg alloy). We then demonstrate the application of our approach on an entire cross section of the artifact.</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-023-00329-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new computational approach for large-scale segmentation and spatially-resolved analysis of melt pools in complex 3D printed parts and qualification artifacts. Our hybrid segmentation includes human-in-the-loop image processing of a few representative optical images of melt pools that are then used for training machine learning models for automated segmentation of melt pool boundaries in large parts. Our approach specifically targets minimizing the need for manual annotation. Considering imperfect segmentation and errors unavoidable with most algorithms, we further propose chord length distribution as a statistical description of melt pool sizes relatively tolerant to segmentation errors. We first show and validate our new approach on optical images of melt pools in a simple 3D printed plate sample (IN718 alloy) as well as selected regions of a complex qualification artifact (AlSi10Mg alloy). We then demonstrate the application of our approach on an entire cross section of the artifact.
期刊介绍:
The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.