Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
S.E. Pustovoitov
{"title":"Classification of Singularities of the Liouville Foliation of an Integrable Elliptical Billiard with a Potential of Fourth Degree","authors":"S.E. Pustovoitov","doi":"10.1134/S1061920823040155","DOIUrl":null,"url":null,"abstract":"<p> The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established. </p><p> <b> DOI</b> 10.1134/S1061920823040155 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"643 - 673"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823040155","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to the study of a billiard bounded by an ellipse and equipped with a fourth degree potential as an integrable Hamiltonian system with two degrees of freedom. In previous works, the author described the structure of the Liouville foliation of such a system on nonsingular levels of the Hamiltonian in terms of Fomenko–Zieschang invariants: marked molecules and 3-atoms. Moreover, the dependence of the structure of the bifurcation diagram on the parameters of the potential has been established. The present work continues this study. Thus, the structure of the Liouville foliation in a neighborhood of critical layers containing a nondegenerate singular point of rank 0 or a degenerate orbit has been described. A classification of the obtained semilocal singularities was given. Finally, connections of our system with well-known cases of rigid body dynamics containing equivalent singularities is established.

DOI 10.1134/S1061920823040155

Abstract Image

具有四阶势能的可积分椭圆台球的柳维尔奇点分类
摘要 本文致力于研究一个以椭圆为边界、装有四度势的台球,它是一个具有两个自由度的可积分哈密顿系统。在以前的著作中,作者用 Fomenko-Zieschang 不变式:标记分子和 3 原子描述了这样一个系统在哈密顿非奇异水平上的 Liouville 折叠结构。此外,还确定了分岔图的结构与势参数的关系。本研究是这一研究的继续。因此,我们描述了临界层邻域中包含秩为 0 的非退化奇异点或退化轨道的柳维尔折线结构。对所获得的半局部奇点进行了分类。最后,建立了我们的系统与包含等效奇点的刚体动力学著名案例之间的联系。 doi 10.1134/s1061920823040155
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信