Method of Potential Operators for Interaction Problems on Unbounded Hypersurfaces in \(\mathbb{R}^{n}\) for Dirac Operators

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
V. S. Rabinovich
{"title":"Method of Potential Operators for Interaction Problems on Unbounded Hypersurfaces in \\(\\mathbb{R}^{n}\\) for Dirac Operators","authors":"V. S. Rabinovich","doi":"10.1134/S1061920823040167","DOIUrl":null,"url":null,"abstract":"<p> We consider the <span>\\(L_{p}\\)</span>-theory of interaction problems associated with Dirac operators with singular potentials of the form <span>\\(D=\\mathfrak{D}_{m,\\Phi }+\\Gamma\\delta_{\\Sigma}\\)</span> where </p><p> is a Dirac operator on <span>\\(\\mathbb{R}^{n}\\)</span>, <span>\\(\\alpha_{1},\\alpha_{2},\\dots,\\alpha _{n},\\alpha_{n+1}\\)</span> are Dirac matrices, <span>\\(m\\)</span> is a variable mass, <span>\\(\\Phi \\mathbb{I}_{N}\\)</span> electrostatic potential, <span>\\(\\Gamma\\delta_{\\Sigma}\\)</span> is a singular potential with support on smooth hypersurfaces <span>\\(\\Sigma \\subset\\mathbb{R}^{n}.\\)</span> </p><p> We associate with the formal Dirac operator <span>\\(D\\)</span> the interaction (transmission) problem on <span>\\(\\mathbb{R}^{n}\\diagdown\\Sigma\\)</span> with the interaction conditions on <span>\\(\\Sigma\\)</span>. Applying the method of potential operators we reduce the interaction problem to a pseudodifferential equation on <span>\\(\\Sigma.\\)</span> The main aim of the paper is the study of Fredholm property of these pseudodifferential operators on unbounded hypersurfaces <span>\\(\\Sigma\\)</span> and applications to the study of Fredholmness of interaction problems on unbounded smooth hypersurfaces in Sobolev and Besov spaces. </p><p> <b> DOI</b> 10.1134/S1061920823040167 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"674 - 690"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823040167","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the \(L_{p}\)-theory of interaction problems associated with Dirac operators with singular potentials of the form \(D=\mathfrak{D}_{m,\Phi }+\Gamma\delta_{\Sigma}\) where

is a Dirac operator on \(\mathbb{R}^{n}\), \(\alpha_{1},\alpha_{2},\dots,\alpha _{n},\alpha_{n+1}\) are Dirac matrices, \(m\) is a variable mass, \(\Phi \mathbb{I}_{N}\) electrostatic potential, \(\Gamma\delta_{\Sigma}\) is a singular potential with support on smooth hypersurfaces \(\Sigma \subset\mathbb{R}^{n}.\)

We associate with the formal Dirac operator \(D\) the interaction (transmission) problem on \(\mathbb{R}^{n}\diagdown\Sigma\) with the interaction conditions on \(\Sigma\). Applying the method of potential operators we reduce the interaction problem to a pseudodifferential equation on \(\Sigma.\) The main aim of the paper is the study of Fredholm property of these pseudodifferential operators on unbounded hypersurfaces \(\Sigma\) and applications to the study of Fredholmness of interaction problems on unbounded smooth hypersurfaces in Sobolev and Besov spaces.

DOI 10.1134/S1061920823040167

针对狄拉克算子的 $$\mathbb{R}^{n}$ 中无边界超曲面上相互作用问题的势算子方法
Abstract We consider the \(L_{p}\)Theory of interaction problems associated with Dirac operators with singular potentials of form (D=\mathfrak{D}_{m、\其中 $$mathfrak{D}_{m,\Phi}=\sum_{j=1}^{n}\alpha_{j}(-i\partial_{x_{j}})+m\alpha_{n+1}+\Phi\mathbb{I}_{N}$$ 是 \(\mathbb{R}^{n}\)上的狄拉克算子、\(\alpha_{1},\alpha_{2},\dots,\alpha _{n},\alpha_{n+1}}\)是狄拉克矩阵,\(m\)是可变质量,\(\Phi \mathbb{I}_{N}\)是静电势、\(((Gamma\delta_{\Sigma}\)是一个奇异势,在光滑超曲面上有支持。\我们把\(\mathbb{R}^{n}\diagdown\Sigma\)上的相互作用(传输)问题和\(\Sigma\)上的相互作用条件与形式上的狄拉克算子\(D\)联系起来。)本文的主要目的是研究这些伪微分算子在无界超曲面 \(\Sigma\) 上的弗里德霍姆性质,并将其应用于研究索波列夫和贝索夫空间中无界光滑超曲面上相互作用问题的弗里德霍姆性。 doi 10.1134/s1061920823040167
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信