{"title":"New eigenvalue bound for the fractional chromatic number","authors":"Krystal Guo, Sam Spiro","doi":"10.1002/jgt.23071","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, we let <math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mo>+</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${s}^{+}(G)$</annotation>\n </semantics></math> denote the sum of the squares of the positive eigenvalues of the adjacency matrix of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, and we similarly define <math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mo>−</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${s}^{-}(G)$</annotation>\n </semantics></math>. We prove that\n\n </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given a graph , we let denote the sum of the squares of the positive eigenvalues of the adjacency matrix of , and we similarly define . We prove that
分数色度数的新特征值约束
给定一个图 G$G$,我们让 s+(G)${s}^{+}(G)$ 表示 G$G$ 的邻接矩阵正特征值的平方和,我们同样定义 s-(G)${s}^{-}(G)$。我们证明
本文章由计算机程序翻译,如有差异,请以英文原文为准。