A review on the performance of concrete filled tubular columns under axial compression: Emphasis on geometrical parameters and various concrete infills and encasings
{"title":"A review on the performance of concrete filled tubular columns under axial compression: Emphasis on geometrical parameters and various concrete infills and encasings","authors":"Isha Rohilla, Surinder Gupta","doi":"10.1002/tal.2088","DOIUrl":null,"url":null,"abstract":"This paper summarizes the literature available on the behavior of concrete-filled steel tubular (CFST) columns to evaluate the effect of geometrical properties such as shape of cross-section, diameter-to-thickness ratio, and length-to-diameter ratio of CFST columns under axial loading. Then, the impact of different material composition for core concrete and encasing material is concluded for columns under axial loading. The performance of CFST is evaluated in terms of failure modes, ductility, stiffness, and axial compressive strength. For encasing tube, carbon steel, stainless steel, and aluminum are studied while for core, various concretes such as Normal (NSC) and high strength concrete (HSC), light weight concrete (LWC), recycled aggregate concrete (RAC), expansive concrete (EC), rubber crumb concrete(R<sub>u</sub>CC), and steel slag concrete (SSC) are covered for review in this paper. Material limitations as provided by various codes for design of composite structures is also mentioned for both tube and core concrete. Failure modes of concrete-filled tubular(CFT) columns are most affected by geometric properties columns while materials used for concrete and encasing tube do not cause much difference. Though, ductility, axial compressive strength, and stiffness are affected by both geometric and material properties.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Structural Design of Tall and Special Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tal.2088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper summarizes the literature available on the behavior of concrete-filled steel tubular (CFST) columns to evaluate the effect of geometrical properties such as shape of cross-section, diameter-to-thickness ratio, and length-to-diameter ratio of CFST columns under axial loading. Then, the impact of different material composition for core concrete and encasing material is concluded for columns under axial loading. The performance of CFST is evaluated in terms of failure modes, ductility, stiffness, and axial compressive strength. For encasing tube, carbon steel, stainless steel, and aluminum are studied while for core, various concretes such as Normal (NSC) and high strength concrete (HSC), light weight concrete (LWC), recycled aggregate concrete (RAC), expansive concrete (EC), rubber crumb concrete(RuCC), and steel slag concrete (SSC) are covered for review in this paper. Material limitations as provided by various codes for design of composite structures is also mentioned for both tube and core concrete. Failure modes of concrete-filled tubular(CFT) columns are most affected by geometric properties columns while materials used for concrete and encasing tube do not cause much difference. Though, ductility, axial compressive strength, and stiffness are affected by both geometric and material properties.