Exploring the effects of temperature on the mechanical properties of high-entropy alloy (CoCrFeNiAl0.1) based on molecular dynamics simulation

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunhai Liu, Benteng Che, Xiaowen Wang, Yiyao Luo, Hu Zhang, Ligao Liu, Penghui Xu
{"title":"Exploring the effects of temperature on the mechanical properties of high-entropy alloy (CoCrFeNiAl0.1) based on molecular dynamics simulation","authors":"Yunhai Liu, Benteng Che, Xiaowen Wang, Yiyao Luo, Hu Zhang, Ligao Liu, Penghui Xu","doi":"10.1088/1361-651x/ad111f","DOIUrl":null,"url":null,"abstract":"In order to further explore the influence of temperature on the face-centered cubic (FCC) single-phase crystal CoCrFeNiAl<sub>0.1</sub>, we conducted a series of Nano-indentation experiments on CoCrFeNiAl<sub>0.1</sub> at different temperatures. At room temperature, the effects of indentation can convert a portion of CoCrFeNiAl<sub>0.1</sub>’s FCC phase into a funnel-shaped hexagonal close-packed (HCP) phase, resulting less deformation on the sides of the indenter. What we analyzed shows that CoCrFeNiAl<sub>0.1</sub>’s HCP phase has excellent heat resistance and mechanics, allowing CoCrFeNiAl<sub>0.1</sub> to maintain great properties in high-temperature environments. However, if <italic toggle=\"yes\">T</italic> ⩾ 1500 K, high temperature will decrease the number of the HCP phases and dislocation density, leading to an accelerated decline in material strength. This research can provide a theoretical relationship between temperature and microstructural evolution for the research and application of CoCrFeNiAl<sub>0.1</sub> in high-temperature environments.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad111f","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to further explore the influence of temperature on the face-centered cubic (FCC) single-phase crystal CoCrFeNiAl0.1, we conducted a series of Nano-indentation experiments on CoCrFeNiAl0.1 at different temperatures. At room temperature, the effects of indentation can convert a portion of CoCrFeNiAl0.1’s FCC phase into a funnel-shaped hexagonal close-packed (HCP) phase, resulting less deformation on the sides of the indenter. What we analyzed shows that CoCrFeNiAl0.1’s HCP phase has excellent heat resistance and mechanics, allowing CoCrFeNiAl0.1 to maintain great properties in high-temperature environments. However, if T ⩾ 1500 K, high temperature will decrease the number of the HCP phases and dislocation density, leading to an accelerated decline in material strength. This research can provide a theoretical relationship between temperature and microstructural evolution for the research and application of CoCrFeNiAl0.1 in high-temperature environments.
基于分子动力学模拟探索温度对高熵合金(CoCrFeNiAl0.1)力学性能的影响
为了进一步探索温度对面心立方(FCC)单相晶体 CoCrFeNiAl0.1 的影响,我们在不同温度下对 CoCrFeNiAl0.1 进行了一系列纳米压痕实验。在室温下,压痕效应可将 CoCrFeNiAl0.1 的部分 FCC 相转化为漏斗状的六方紧密堆积(HCP)相,从而减少压头两侧的变形。我们的分析表明,CoCrFeNiAl0.1 的 HCP 相具有出色的耐热性和力学性能,可使 CoCrFeNiAl0.1 在高温环境中保持良好的性能。然而,如果 T ⩾ 1500 K,高温会减少 HCP 相的数量和位错密度,导致材料强度加速下降。该研究可为 CoCrFeNiAl0.1 在高温环境中的研究和应用提供温度与微观结构演变之间的理论关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信