Maximizing the Second Robin Eigenvalue of Simply Connected Curved Membranes

IF 0.6 4区 数学 Q3 MATHEMATICS
Jeffrey J. Langford, Richard S. Laugesen
{"title":"Maximizing the Second Robin Eigenvalue of Simply Connected Curved Membranes","authors":"Jeffrey J. Langford, Richard S. Laugesen","doi":"10.1007/s40315-023-00516-1","DOIUrl":null,"url":null,"abstract":"<p>The second eigenvalue of the Robin Laplacian is shown to be maximal for a spherical cap among simply connected Jordan domains on the 2-sphere, for substantial intervals of positive and negative Robin parameters and areas. Geodesic disks in the hyperbolic plane similarly maximize the eigenvalue on a natural interval of negative Robin parameters. These theorems extend work of Freitas and Laugesen from the Euclidean case (zero curvature) and the authors’ hyperbolic and spherical results for Neumann eigenvalues (zero Robin parameter). Complicating the picture is the numerically observed fact that the second Robin eigenfunction on a large spherical cap is purely radial, with no angular dependence, when the Robin parameter lies in a certain negative interval depending on the cap aperture.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"71 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-023-00516-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The second eigenvalue of the Robin Laplacian is shown to be maximal for a spherical cap among simply connected Jordan domains on the 2-sphere, for substantial intervals of positive and negative Robin parameters and areas. Geodesic disks in the hyperbolic plane similarly maximize the eigenvalue on a natural interval of negative Robin parameters. These theorems extend work of Freitas and Laugesen from the Euclidean case (zero curvature) and the authors’ hyperbolic and spherical results for Neumann eigenvalues (zero Robin parameter). Complicating the picture is the numerically observed fact that the second Robin eigenfunction on a large spherical cap is purely radial, with no angular dependence, when the Robin parameter lies in a certain negative interval depending on the cap aperture.

Abstract Image

最大化简单连接曲面膜的第二罗宾特征值
对于 2 球面上简单连接的约旦域中的球帽,在正负罗宾参数和面积的大区间内,罗宾拉普拉奇的第二个特征值被证明是最大的。双曲面中的测地圆盘同样在负罗宾参数的自然区间内最大化特征值。这些定理扩展了 Freitas 和 Laugesen 在欧几里得情况(零曲率)下的研究成果,以及作者在双曲面和球面情况下对诺伊曼特征值(零罗宾参数)的研究成果。使问题更加复杂的是,根据数值观察,当罗宾参数位于某个负区间时,大球盖上的第二个罗宾特征函数是纯径向的,与角度无关,这取决于球盖的孔径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信