{"title":"Population genetic structure and demographic history of the timber tree Dicorynia guianensis in French Guiana","authors":"Julien Bonnier, Niklas Tysklind, Valérie Troispoux, Ivan Scotti, Stéphanie Barthe, Olivier Brunaux, Stéphane Guitet, Stéphane Traissac, Myriam Heuertz","doi":"10.1007/s11295-023-01633-7","DOIUrl":null,"url":null,"abstract":"<p>Tropical rainforests host exceptional biodiversity and provide important ecosystem services, but they are facing anthropogenic and climatic threats. Preserving the genetic diversity of forest tree populations is essential for their capacity to adapt and exhibit resilience to environmental changes and anthropogenic pressures. Here, we collected conservation genetic baseline information for the heavily exploited timber tree <i>Dicorynia guianensis</i> Amshoff (Fabaceae) at the regional and local levels in French Guiana. Based on genotyping at five microsatellite loci in 1566 individuals collected in 23 forest locations, we documented the genetic differentiation of locations from the West of French Guiana and identified distinctive genetic diversity patterns with higher genetic diversity and some bottlenecked sites in the East and inland. The regional population genetic structure is likely the result of past population isolation in distinct Pleistocene refuges and different demographic histories potentially influenced by Holocene drought periods or palaeofires. Assessment of spatial genetic structure (<i>Sp</i> from 0 to 0.028) in five intensively sampled locations yielded estimates of Wright’s neighborhood size of 35 to 313, indicative of restricted dispersal and local metapopulation dynamics, and useful as baseline information to assess the effects of selective logging for conservation management. These results support the current management strategies with low impact extraction of <i>D. guianensis</i> in three zones of the French Guiana permanent forest domain and allow us to make recommendations for further research and management to best preserve its genetic diversity and adaptive potential.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11295-023-01633-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tropical rainforests host exceptional biodiversity and provide important ecosystem services, but they are facing anthropogenic and climatic threats. Preserving the genetic diversity of forest tree populations is essential for their capacity to adapt and exhibit resilience to environmental changes and anthropogenic pressures. Here, we collected conservation genetic baseline information for the heavily exploited timber tree Dicorynia guianensis Amshoff (Fabaceae) at the regional and local levels in French Guiana. Based on genotyping at five microsatellite loci in 1566 individuals collected in 23 forest locations, we documented the genetic differentiation of locations from the West of French Guiana and identified distinctive genetic diversity patterns with higher genetic diversity and some bottlenecked sites in the East and inland. The regional population genetic structure is likely the result of past population isolation in distinct Pleistocene refuges and different demographic histories potentially influenced by Holocene drought periods or palaeofires. Assessment of spatial genetic structure (Sp from 0 to 0.028) in five intensively sampled locations yielded estimates of Wright’s neighborhood size of 35 to 313, indicative of restricted dispersal and local metapopulation dynamics, and useful as baseline information to assess the effects of selective logging for conservation management. These results support the current management strategies with low impact extraction of D. guianensis in three zones of the French Guiana permanent forest domain and allow us to make recommendations for further research and management to best preserve its genetic diversity and adaptive potential.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.