{"title":"Neoichnological analysis of sea stars in the deep sea near the Aleutian Trench: behavioral insights from in situ observations","authors":"Olmo Miguez-Salas, Angelika Brandt, Camille Moreau","doi":"10.1007/s12526-023-01398-1","DOIUrl":null,"url":null,"abstract":"<p>The study of biogenic structures (e.g., lebensspuren) produced by benthic fauna on the seafloor provides invaluable information about the behavior of their tracemakers. In the case of sea stars, most of the previous research has been focused on shallow-marine environments due to the extreme scarcity of data from deep-sea lebensspurens. Here, we examined sea star traces from six deep-sea stations (deeper than 4500 m) near the Aleutian Trench (North Pacific). A total of six families were identified from still images. The majority of them were not observed producing any lebensspuren or just pentameral impressions related to resting and feeding activities. Two members of the families Pterasteridae and Porcellanasteridae could be clearly characterized by a composite behavior resulting in contrasting lebensspuren morphotypes. A morphotype belonging to the genus <i>Hymenaster</i> undet<i>.</i> produced pentameral impressions (related to predation) and punctuated trails (related to podia locomotion). Members of the family Porcellanasteridae produced oval to circular impressions (that may be related to burrowing trails for the detection of organic matter), flat-shallow trails (related to podia locomotion), and irregular M-ridged trails (related to locomotion while feeding through the sediment interface). There is a severe scarcity of data related to the locomotion of past deep-sea Asteroidea (i.e., trace fossils) and their ichnotaxonomical classification. We discuss the implications of our results for the ichnofamily Biformitidae, as well as the importance of considering other features (e.g., podia impressions) rather than just hook-shaped traces related to arm locomotion.</p>","PeriodicalId":18201,"journal":{"name":"Marine Biodiversity","volume":"3 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biodiversity","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12526-023-01398-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The study of biogenic structures (e.g., lebensspuren) produced by benthic fauna on the seafloor provides invaluable information about the behavior of their tracemakers. In the case of sea stars, most of the previous research has been focused on shallow-marine environments due to the extreme scarcity of data from deep-sea lebensspurens. Here, we examined sea star traces from six deep-sea stations (deeper than 4500 m) near the Aleutian Trench (North Pacific). A total of six families were identified from still images. The majority of them were not observed producing any lebensspuren or just pentameral impressions related to resting and feeding activities. Two members of the families Pterasteridae and Porcellanasteridae could be clearly characterized by a composite behavior resulting in contrasting lebensspuren morphotypes. A morphotype belonging to the genus Hymenaster undet. produced pentameral impressions (related to predation) and punctuated trails (related to podia locomotion). Members of the family Porcellanasteridae produced oval to circular impressions (that may be related to burrowing trails for the detection of organic matter), flat-shallow trails (related to podia locomotion), and irregular M-ridged trails (related to locomotion while feeding through the sediment interface). There is a severe scarcity of data related to the locomotion of past deep-sea Asteroidea (i.e., trace fossils) and their ichnotaxonomical classification. We discuss the implications of our results for the ichnofamily Biformitidae, as well as the importance of considering other features (e.g., podia impressions) rather than just hook-shaped traces related to arm locomotion.
期刊介绍:
Marine Biodiversity is a peer-reviewed international journal devoted to all aspects of biodiversity research on marine ecosystems. The journal is a relaunch of the well-known Senckenbergiana maritima" and covers research at gene, species and ecosystem level that focuses on describing the actors (genes and species), the patterns (gradients and distributions) and understanding of the processes responsible for the regulation and maintenance of diversity in marine systems. Also included are the study of species interactions (symbioses, parasitism, etc.) and the role of species in structuring marine ecosystem functioning.
Marine Biodiversity offers articles in the category original paper, short note, Oceanarium and review article. It forms a platform for marine biodiversity researchers from all over the world for the exchange of new information and discussions on concepts and exciting discoveries.
- Covers research in all aspects of biodiversity in marine ecosystems
- Describes the actors, the patterns and the processes responsible for diversity
- Offers peer-reviewed original papers, short communications, review articles and news (Oceanarium)
- No page charges