Improved rates for a space–time FOSLS of parabolic PDEs

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Gregor Gantner, Rob Stevenson
{"title":"Improved rates for a space–time FOSLS of parabolic PDEs","authors":"Gregor Gantner, Rob Stevenson","doi":"10.1007/s00211-023-01387-3","DOIUrl":null,"url":null,"abstract":"<p>We consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components <span>\\((u_1,\\textbf{u}_2)=(u,-\\nabla _\\textbf{x} u)\\)</span>. The corresponding operator is boundedly invertible between a Hilbert space <i>U</i> and a Cartesian product of <span>\\(L_2\\)</span>-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides <span>\\(L_2\\)</span>-norms of <span>\\(\\nabla _\\textbf{x} u_1\\)</span> and <span>\\(\\textbf{u}_2\\)</span>, the (graph) norm of <i>U</i> contains the <span>\\(L_2\\)</span>-norm of <span>\\(\\partial _t u_1 +{{\\,\\textrm{div}\\,}}_\\textbf{x} \\textbf{u}_2\\)</span>. When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of <span>\\(\\textbf{u}_2\\)</span>. In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions <i>u</i>. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of <span>\\(\\partial _t u_1 +{{\\,\\textrm{div}\\,}}_\\textbf{x} \\textbf{u}_2\\)</span>, i.e., of the forcing term <span>\\(f=(\\partial _t-\\Delta _x)u\\)</span>. Numerical results show significantly improved convergence rates.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"87 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01387-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components \((u_1,\textbf{u}_2)=(u,-\nabla _\textbf{x} u)\). The corresponding operator is boundedly invertible between a Hilbert space U and a Cartesian product of \(L_2\)-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides \(L_2\)-norms of \(\nabla _\textbf{x} u_1\) and \(\textbf{u}_2\), the (graph) norm of U contains the \(L_2\)-norm of \(\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\). When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of \(\textbf{u}_2\). In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions u. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of \(\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\), i.e., of the forcing term \(f=(\partial _t-\Delta _x)u\). Numerical results show significantly improved convergence rates.

Abstract Image

改进抛物线 PDE 时空 FOSLS 的速率
我们考虑 Bochev 和 Gunzburger 引入的热方程一阶系统时空表述(见 Bochev 和 Gunzburger(编)《应用数学科学》第 166 卷,施普林格出版社,纽约,2009 年),以及 Führer 和 Karkulik 对其进行的分析(《计算数学应用》,纽约,2009 年):Führer and Karkulik (Comput Math Appl 92:27-36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283-299 2021) 对其进行了分析,其解分量为 \((u_1,\textbf{u}_2)=(u,-\nabla _textbf{x} u)\)。相应的算子在希尔伯特空间 U 和 \(L_2\)-type 空间的笛卡尔乘积之间是有界可逆的,这便于一阶系统最小二乘(FOSLS)离散化。除了\(\nabla _\textbf{x} u_1\) 和\(\textbf{u}_2\)的\(L_2\)-规范外,U的(图)规范还包含\(\partial _t u_1 +{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\)的\(L_2\)-规范。当应用标准有限元对时空圆柱体进行简分时,对后一种规范的近似误差估计需要 \(\textbf{u}_2\) 的高阶平稳性。在均匀分区和自适应细化分区的实验中,非光滑解 u 的收敛率低得令人失望。它们带有一个准内插值,该准内插值满足近似换向图的意义,即除了一些无害项之外,上述误差完全取决于 \(\partial _t u_1 +{{\textrm{div}\,}}_\textbf{x} \textbf{u}_2/)的光滑度,即强制项 \(f=(\partial _t-\Delta _x)u/)的光滑度。数值结果表明收敛速度明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信