Effect of Water-Soluble Polymers on the Dynamics of Carbon Dioxide Sorption by Lime-Based Sorbents

IF 0.7 Q4 ENGINEERING, CHEMICAL
V. S. Derevshchikov, O. Yu. Selyutina
{"title":"Effect of Water-Soluble Polymers on the Dynamics of Carbon Dioxide Sorption by Lime-Based Sorbents","authors":"V. S. Derevshchikov,&nbsp;O. Yu. Selyutina","doi":"10.1134/S2070050423040062","DOIUrl":null,"url":null,"abstract":"<p>This study concerns the effect of water-soluble polymers with different structures on the sorption properties of unregenerable lime-based sorbents of carbon dioxide. It is shown that introducing water-soluble polymers into the composition of sorbents can either prolong or shorten the periods of their protective effect. To explain these findings, the porous structure of sorbents is studied, the transport of carbon dioxide is modeled using molecular dynamics, and coefficients of the diffusion of СО<sub>2</sub> in water–polymer solutions are calculated. Modelling results correlate with data from sorption experiments: a stronger dynamic sorption capacity is obtained for a sorbent when a water–polymer medium with a greater coefficient of СО<sub>2</sub> diffusion is added. These results can be used to optimize systems for separating carbon dioxide from gaseous mixtures and intensify mass transfer in systems for the photo- and electrocatalytic conversion of СО<sub>2</sub> into useful products.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"325 - 332"},"PeriodicalIF":0.7000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050423040062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study concerns the effect of water-soluble polymers with different structures on the sorption properties of unregenerable lime-based sorbents of carbon dioxide. It is shown that introducing water-soluble polymers into the composition of sorbents can either prolong or shorten the periods of their protective effect. To explain these findings, the porous structure of sorbents is studied, the transport of carbon dioxide is modeled using molecular dynamics, and coefficients of the diffusion of СО2 in water–polymer solutions are calculated. Modelling results correlate with data from sorption experiments: a stronger dynamic sorption capacity is obtained for a sorbent when a water–polymer medium with a greater coefficient of СО2 diffusion is added. These results can be used to optimize systems for separating carbon dioxide from gaseous mixtures and intensify mass transfer in systems for the photo- and electrocatalytic conversion of СО2 into useful products.

Abstract Image

Abstract Image

水溶性聚合物对石灰基吸附剂吸附二氧化碳动力学的影响
摘要 本研究涉及不同结构的水溶性聚合物对不可再生石灰基二氧化碳吸附剂吸附性能的影响。研究表明,在吸附剂成分中引入水溶性聚合物可以延长或缩短其保护作用的时间。为了解释这些发现,研究人员对吸附剂的多孔结构进行了研究,使用分子动力学对二氧化碳的迁移进行了模拟,并计算了СО2 在水-聚合物溶液中的扩散系数。建模结果与吸附实验数据相关:当加入СО2扩散系数更大的水-聚合物介质时,吸附剂会获得更强的动态吸附能力。这些结果可用于优化从气态混合物中分离二氧化碳的系统,以及加强光催化和电催化将СО2 转化为有用产品的系统中的传质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis in Industry
Catalysis in Industry ENGINEERING, CHEMICAL-
CiteScore
1.30
自引率
14.30%
发文量
21
期刊介绍: The journal covers the following topical areas: Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信