{"title":"Alkoxycarbonylation of Unsaturated Substrates of Plant Origin in the Presence of Palladium Catalysts as a Route to Synthesize Ester Products","authors":"N. T. Sevostyanova, S. A. Batashev","doi":"10.1134/S2070050423040104","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of esters by the alkoxycarbonylation of unsaturated substrates of plant origin opens up the possibility of switching to alternative raw materials and provides a solution to a number of problems facing the chemical industry: resource saving, waste minimization, and increasing the environmental safety and efficiency of the processes being implemented. However, to date, only the production of methyl methacrylate, which includes ethylene methoxycarbonylation as one of the stages, has been implemented in industry. The aim of this review is to systematize and analyze the data published since 2010 in the field of ester synthesis by the alkoxycarbonylation of plant substrates under mild conditions. It has been found that, over the indicated period, the alkoxycarbonylation of pentenoic and undecenoic acids, oleic, linoleic, and erucic acids or their esters, and terpene compounds—citronellic acid and β-myrcene—has been implemented. It has been shown that high yields of linear products and selectivities for them under mild conditions have been provided mostly by using homogeneous palladium–diphosphine catalysts. The results of these studies open up broad prospects for the implementation of processes that are new for industry, namely, the alkoxycarbonylation of substrates of plant origin for synthesizing chemical products of high priority, primarily polymers.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"333 - 349"},"PeriodicalIF":0.7000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050423040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of esters by the alkoxycarbonylation of unsaturated substrates of plant origin opens up the possibility of switching to alternative raw materials and provides a solution to a number of problems facing the chemical industry: resource saving, waste minimization, and increasing the environmental safety and efficiency of the processes being implemented. However, to date, only the production of methyl methacrylate, which includes ethylene methoxycarbonylation as one of the stages, has been implemented in industry. The aim of this review is to systematize and analyze the data published since 2010 in the field of ester synthesis by the alkoxycarbonylation of plant substrates under mild conditions. It has been found that, over the indicated period, the alkoxycarbonylation of pentenoic and undecenoic acids, oleic, linoleic, and erucic acids or their esters, and terpene compounds—citronellic acid and β-myrcene—has been implemented. It has been shown that high yields of linear products and selectivities for them under mild conditions have been provided mostly by using homogeneous palladium–diphosphine catalysts. The results of these studies open up broad prospects for the implementation of processes that are new for industry, namely, the alkoxycarbonylation of substrates of plant origin for synthesizing chemical products of high priority, primarily polymers.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.