{"title":"SOLVABLE GROUPS WHOSE NONNORMAL SUBGROUPS HAVE FEW ORDERS","authors":"LIJUAN HE, HENG LV, GUIYUN CHEN","doi":"10.1017/s0004972723001168","DOIUrl":null,"url":null,"abstract":"Suppose that <jats:italic>G</jats:italic> is a finite solvable group. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline1.png\" /> <jats:tex-math> $t=n_c(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the number of orders of nonnormal subgroups of <jats:italic>G</jats:italic>. We bound the derived length <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline2.png\" /> <jats:tex-math> $dl(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline3.png\" /> <jats:tex-math> $n_c(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:italic>G</jats:italic> is a finite <jats:italic>p</jats:italic>-group, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline4.png\" /> <jats:tex-math> $|G'|\\leq p^{2t+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline5.png\" /> <jats:tex-math> $dl(G)\\leq \\lceil \\log _2(2t+3)\\rceil $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:italic>G</jats:italic> is a finite solvable nonnilpotent group, we prove that the sum of the powers of the prime divisors of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline6.png\" /> <jats:tex-math> $|G'|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is less than <jats:italic>t</jats:italic> and that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline7.png\" /> <jats:tex-math> $dl(G)\\leq \\lfloor 2(t+1)/3\\rfloor +1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"109 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Suppose that G is a finite solvable group. Let $t=n_c(G)$ denote the number of orders of nonnormal subgroups of G. We bound the derived length $dl(G)$ in terms of $n_c(G)$ . If G is a finite p-group, we show that $|G'|\leq p^{2t+1}$ and $dl(G)\leq \lceil \log _2(2t+3)\rceil $ . If G is a finite solvable nonnilpotent group, we prove that the sum of the powers of the prime divisors of $|G'|$ is less than t and that $dl(G)\leq \lfloor 2(t+1)/3\rfloor +1$ .
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society