SOLVABLE GROUPS WHOSE NONNORMAL SUBGROUPS HAVE FEW ORDERS

IF 0.6 4区 数学 Q3 MATHEMATICS
LIJUAN HE, HENG LV, GUIYUN CHEN
{"title":"SOLVABLE GROUPS WHOSE NONNORMAL SUBGROUPS HAVE FEW ORDERS","authors":"LIJUAN HE, HENG LV, GUIYUN CHEN","doi":"10.1017/s0004972723001168","DOIUrl":null,"url":null,"abstract":"Suppose that <jats:italic>G</jats:italic> is a finite solvable group. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline1.png\" /> <jats:tex-math> $t=n_c(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the number of orders of nonnormal subgroups of <jats:italic>G</jats:italic>. We bound the derived length <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline2.png\" /> <jats:tex-math> $dl(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline3.png\" /> <jats:tex-math> $n_c(G)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:italic>G</jats:italic> is a finite <jats:italic>p</jats:italic>-group, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline4.png\" /> <jats:tex-math> $|G'|\\leq p^{2t+1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline5.png\" /> <jats:tex-math> $dl(G)\\leq \\lceil \\log _2(2t+3)\\rceil $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:italic>G</jats:italic> is a finite solvable nonnilpotent group, we prove that the sum of the powers of the prime divisors of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline6.png\" /> <jats:tex-math> $|G'|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is less than <jats:italic>t</jats:italic> and that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001168_inline7.png\" /> <jats:tex-math> $dl(G)\\leq \\lfloor 2(t+1)/3\\rfloor +1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"109 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that G is a finite solvable group. Let $t=n_c(G)$ denote the number of orders of nonnormal subgroups of G. We bound the derived length $dl(G)$ in terms of $n_c(G)$ . If G is a finite p-group, we show that $|G'|\leq p^{2t+1}$ and $dl(G)\leq \lceil \log _2(2t+3)\rceil $ . If G is a finite solvable nonnilpotent group, we prove that the sum of the powers of the prime divisors of $|G'|$ is less than t and that $dl(G)\leq \lfloor 2(t+1)/3\rfloor +1$ .
非正常子群阶数少的可解群
假设 G 是一个有限可解群。让 $t=n_c(G)$ 表示 G 的非正则子群的阶数。我们用 $n_c(G)$ 约束派生长度 $dl(G)$ 。如果 G 是有限 p 群,我们证明 $|G'|\leq p^{2t+1}$ 和 $dl(G)\leq \lceil \log _2(2t+3)\rceil $ 。如果 G 是一个有限可解的非幂群,我们证明 $|G'|$ 的素除数的幂和小于 t 并且 $dl(G)\leq \lfloor 2(t+1)/3\rfloor +1$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信