Counting orbits of certain infinitely generated non-sharp discontinuous groups for the anti-de Sitter space

Kazuki Kannaka
{"title":"Counting orbits of certain infinitely generated non-sharp discontinuous groups for the anti-de Sitter space","authors":"Kazuki Kannaka","doi":"10.1007/s00029-023-00902-6","DOIUrl":null,"url":null,"abstract":"<p>Inspired by an example of Guéritaud and Kassel (Geom Topol 21(2):693–840, 2017), we construct a family of infinitely generated discontinuous groups <span>\\(\\Gamma \\)</span> for the 3-dimensional anti-de Sitter space <span>\\(\\textrm{AdS}^{3}\\)</span>. These groups are <i>not necessarily sharp</i> (a kind of “strong” proper discontinuity condition introduced by Kassel and Kobayashi (Adv Math 287:123–236, 2016), and we give its criterion. Moreover, we find upper and lower bounds of the counting <span>\\(N_{\\Gamma }(R)\\)</span> of a <span>\\(\\Gamma \\)</span>-orbit contained in a pseudo-ball <i>B</i>(<i>R</i>) as the radius <i>R</i> tends to infinity. We then find a non-sharp discontinuous group <span>\\(\\Gamma \\)</span> for which there exist infinitely many <span>\\(L^2\\)</span>-eigenvalues of the Laplacian on the noncompact anti-de Sitter manifold <span>\\(\\Gamma \\backslash \\textrm{AdS}^{3}\\)</span>, by applying the method established by Kassel–Kobayashi. We also prove that for any increasing function <i>f</i>, there exists a discontinuous group <span>\\(\\Gamma \\)</span> for <span>\\(\\textrm{AdS}^{3}\\)</span> such that the counting <span>\\(N_{\\Gamma }(R)\\)</span> of a <span>\\(\\Gamma \\)</span>-orbit is larger than <i>f</i>(<i>R</i>) for a sufficiently large <i>R</i>.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00902-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by an example of Guéritaud and Kassel (Geom Topol 21(2):693–840, 2017), we construct a family of infinitely generated discontinuous groups \(\Gamma \) for the 3-dimensional anti-de Sitter space \(\textrm{AdS}^{3}\). These groups are not necessarily sharp (a kind of “strong” proper discontinuity condition introduced by Kassel and Kobayashi (Adv Math 287:123–236, 2016), and we give its criterion. Moreover, we find upper and lower bounds of the counting \(N_{\Gamma }(R)\) of a \(\Gamma \)-orbit contained in a pseudo-ball B(R) as the radius R tends to infinity. We then find a non-sharp discontinuous group \(\Gamma \) for which there exist infinitely many \(L^2\)-eigenvalues of the Laplacian on the noncompact anti-de Sitter manifold \(\Gamma \backslash \textrm{AdS}^{3}\), by applying the method established by Kassel–Kobayashi. We also prove that for any increasing function f, there exists a discontinuous group \(\Gamma \) for \(\textrm{AdS}^{3}\) such that the counting \(N_{\Gamma }(R)\) of a \(\Gamma \)-orbit is larger than f(R) for a sufficiently large R.

Abstract Image

反德西特空间某些无限生成的非尖锐不连续群的轨道计数
受Guéritaud和Kassel(Geom Topol 21(2):693-840, 2017)的一个例子的启发,我们为三维反德西特空间\(\textrm{AdS}^{3}\)构造了一族无限生成的不连续群\(\Gamma \)。这些群不一定是尖锐的(卡塞尔和小林(Adv Math 287:123-236, 2016)引入的一种 "强 "适当不连续性条件),我们给出了其判据。此外,随着半径R趋于无穷大,我们找到了包含在伪球B(R)中的\(\Gamma \)轨道的计数\(N_{\Gamma }(R)\)的上界和下界。然后,我们应用卡塞尔-小林(Kassel-Kobayashi)建立的方法找到了一个非尖锐的不连续群(\(\Gamma \)),对于这个不连续群,在非紧凑的反德西特流形\(\Gamma \backslash \textrm{AdS}^{3}\) 上存在无限多的\(L^2\)-拉普拉奇特征值。我们还证明了对于任何递增函数f,对于\(\textrm{AdS}^{3}\)存在一个不连续群\(\Gamma \),使得在足够大的R下,\(\Gamma \)-轨道的计数\(N_{\Gamma }(R)\) 大于f(R)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信