Strongly divisible lattices and crystalline cohomology in the imperfect residue field case

Yong Suk Moon
{"title":"Strongly divisible lattices and crystalline cohomology in the imperfect residue field case","authors":"Yong Suk Moon","doi":"10.1007/s00029-023-00899-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>k</i> be a perfect field of characteristic <span>\\(p \\ge 3\\)</span>, and let <i>K</i> be a finite totally ramified extension of <span>\\(K_0 = W(k)[p^{-1}]\\)</span>. Let <span>\\(L_0\\)</span> be a complete discrete valuation field over <span>\\(K_0\\)</span> whose residue field has a finite <i>p</i>-basis, and let <span>\\(L = L_0\\otimes _{K_0} K\\)</span>. For <span>\\(0 \\le r \\le p-2\\)</span>, we classify <span>\\(\\textbf{Z}_p\\)</span>-lattices of semistable representations of <span>\\(\\textrm{Gal}(\\overline{L}/L)\\)</span> with Hodge–Tate weights in [0, <i>r</i>] by strongly divisible lattices. This generalizes the result of Liu (Compos Math 144:61–88, 2008). Moreover, if <span>\\(\\mathcal {X}\\)</span> is a proper smooth formal scheme over <span>\\(\\mathcal {O}_L\\)</span>, we give a cohomological description of the strongly divisible lattice associated to <span>\\(H^i_{\\acute{\\text {e}}\\text {t}}(\\mathcal {X}_{\\overline{L}}, \\textbf{Z}_p)\\)</span> for <span>\\(i \\le p-2\\)</span>, under the assumption that the crystalline cohomology of the special fiber of <span>\\(\\mathcal {X}\\)</span> is torsion-free in degrees <i>i</i> and <span>\\(i+1\\)</span>. This generalizes a result in Cais and Liu (Trans Am Math Soc 371:1199–1230, 2019).</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00899-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let k be a perfect field of characteristic \(p \ge 3\), and let K be a finite totally ramified extension of \(K_0 = W(k)[p^{-1}]\). Let \(L_0\) be a complete discrete valuation field over \(K_0\) whose residue field has a finite p-basis, and let \(L = L_0\otimes _{K_0} K\). For \(0 \le r \le p-2\), we classify \(\textbf{Z}_p\)-lattices of semistable representations of \(\textrm{Gal}(\overline{L}/L)\) with Hodge–Tate weights in [0, r] by strongly divisible lattices. This generalizes the result of Liu (Compos Math 144:61–88, 2008). Moreover, if \(\mathcal {X}\) is a proper smooth formal scheme over \(\mathcal {O}_L\), we give a cohomological description of the strongly divisible lattice associated to \(H^i_{\acute{\text {e}}\text {t}}(\mathcal {X}_{\overline{L}}, \textbf{Z}_p)\) for \(i \le p-2\), under the assumption that the crystalline cohomology of the special fiber of \(\mathcal {X}\) is torsion-free in degrees i and \(i+1\). This generalizes a result in Cais and Liu (Trans Am Math Soc 371:1199–1230, 2019).

不完全残差域情况下的强可分晶格和结晶同调学
让k是特性为(pge 3)的完全域,让K是(K_0 = W(k)[p^{-1}])的有限完全斜伸。让\(L_0\)是\(K_0\)上的一个完整的离散估值域,它的残差域有一个有限的p基,让\(L = L_0\otimes _{K_0} K\).对于 \(0 \le r \le p-2\),我们用强可分网格来分类 \(\textbf{Z}_p\)-lattices of semistable representations of \(\textrm{Gal}(\overline{L}/L)\) with Hodge-Tate weights in [0, r] by strongly divisible lattices.这概括了 Liu 的结果 (Compos Math 144:61-88, 2008)。此外,如果 \(\mathcal {X}\) 是一个在 \(\mathcal {O}_L\) 上的适当的光滑形式方案,我们给出了与\(H^i_{\acute\{text {e}}text {t}}(\mathcal {X}_{\overline{L}}.) 相关的强可分网格的同调描述、\的特殊纤维的结晶同调在度数 i 和 \(i+1\) 中是无扭的。这概括了 Cais 和 Liu (Trans Am Math Soc 371:1199-1230, 2019) 的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信