Asymmetric fracture behavior in ferroelectric materials induced by flexoelectric effect

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Yangqin Guo, Chang Liu, Xiangyu Li
{"title":"Asymmetric fracture behavior in ferroelectric materials induced by flexoelectric effect","authors":"Yangqin Guo, Chang Liu, Xiangyu Li","doi":"10.1063/5.0178866","DOIUrl":null,"url":null,"abstract":"Ferroelectric materials are widely used in actuators, exciters, and memory devices due to their excellent electromechanical properties. However, the instinctive brittleness of ferroelectric materials makes them easy to fracture under external load. Since giant strain gradient can be easily generated near the crack tip, the flexoelectric effect is indispensable in the research of fracture properties of ferroelectric materials. With the combination of time-dependent Ginzburg–Landau theory and phase-field model, the electromechanical behavior of PbTiO3 in the vicinity of the crack tip is determined in this work. The simulation results demonstrate that the domain structure near the crack tip becomes asymmetric with the flexoelectric effect. The polarization switching-induced toughening, which is characterized by the J-integral, depends on the direction of the crack relative to the original polarization orientation. Furthermore, the longitude flexoelectric coefficient f11 has more significant impact on the fracture toughness than that of the transverse flexoelectric coefficient f12 and the shear flexoelectric coefficient f44. The results of the present work suggest that the flexoelectric effect must be considered in the reliable design of ferroelectric devices.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"27 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0178866","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectric materials are widely used in actuators, exciters, and memory devices due to their excellent electromechanical properties. However, the instinctive brittleness of ferroelectric materials makes them easy to fracture under external load. Since giant strain gradient can be easily generated near the crack tip, the flexoelectric effect is indispensable in the research of fracture properties of ferroelectric materials. With the combination of time-dependent Ginzburg–Landau theory and phase-field model, the electromechanical behavior of PbTiO3 in the vicinity of the crack tip is determined in this work. The simulation results demonstrate that the domain structure near the crack tip becomes asymmetric with the flexoelectric effect. The polarization switching-induced toughening, which is characterized by the J-integral, depends on the direction of the crack relative to the original polarization orientation. Furthermore, the longitude flexoelectric coefficient f11 has more significant impact on the fracture toughness than that of the transverse flexoelectric coefficient f12 and the shear flexoelectric coefficient f44. The results of the present work suggest that the flexoelectric effect must be considered in the reliable design of ferroelectric devices.
铁电材料在挠电效应诱导下的非对称断裂行为
铁电材料因其出色的机电特性而被广泛应用于致动器、激励器和存储设备中。然而,铁电材料本能的脆性使其在外力作用下容易断裂。由于在裂纹尖端附近很容易产生巨大的应变梯度,因此在研究铁电材料的断裂特性时,挠电效应是不可或缺的。本文结合随时间变化的金兹堡-朗道理论和相场模型,确定了 PbTiO3 在裂纹尖端附近的机电行为。模拟结果表明,在挠电效应的作用下,裂纹尖端附近的畴结构变得不对称。极化切换引起的增韧以 J 积分为特征,取决于裂纹相对于原始极化方向的方向。此外,与横向挠电系数 f12 和剪切挠电系数 f44 相比,经向挠电系数 f11 对断裂韧性的影响更为显著。本研究结果表明,在铁电器件的可靠设计中必须考虑挠电效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信