The continuous dependence of the viscous Boussinesq equations uniformly with respect to the viscosity

Rong Chen, Zhichun Yang, Shouming Zhou
{"title":"The continuous dependence of the viscous Boussinesq equations uniformly with respect to the viscosity","authors":"Rong Chen, Zhichun Yang, Shouming Zhou","doi":"10.1007/s00030-023-00902-7","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the inviscid limit of the incompressible Boussinesq equations in the same topology as the initial data, and proved that the continuous dependence of the viscous Boussinesq equations uniformly in some Besov spaces with respect to the viscosity. Our results extends the work of Guo et al. (J Funct Anal 276(9):2821–2830, 2019) on Navier–Stokes equations to Boussinesq equations with both stratified limit and earth’s rotation.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00902-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the inviscid limit of the incompressible Boussinesq equations in the same topology as the initial data, and proved that the continuous dependence of the viscous Boussinesq equations uniformly in some Besov spaces with respect to the viscosity. Our results extends the work of Guo et al. (J Funct Anal 276(9):2821–2830, 2019) on Navier–Stokes equations to Boussinesq equations with both stratified limit and earth’s rotation.

粘滞布森斯克方程与粘度的均匀连续相关性
本文重点研究了与初始数据拓扑相同的不可压缩布森斯克方程的无粘性极限,证明了粘性布森斯克方程在某些贝索夫空间中关于粘性的均匀连续依赖性。我们的研究成果将 Guo 等人 (J Funct Anal 276(9):2821-2830, 2019) 关于 Navier-Stokes 方程的研究扩展到了具有分层极限和地球自转的 Boussinesq 方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信