{"title":"Development of Analytical Offloading for Innovative Internet of Vehicles Based on Mobile Edge Computing","authors":"Ming Zhang","doi":"10.1007/s10723-023-09719-1","DOIUrl":null,"url":null,"abstract":"<p>The current task offloading technique needs to be performed more effectively. Onboard terminals cannot execute efficient computation due to the explosive expansion of data flow, the quick increase in vehicle population, and the growing scarcity of spectrum resources. As a result, this study suggests a task-offloading technique based on reinforcement learning computing for the Internet of Vehicles edge computing architecture. The system framework for the Internet of Vehicles has been initially developed. Although the control centre gathers all vehicle information, the roadside unit collects vehicle data from the neighborhood and sends it to a mobile edge computing server for processing. Then, to guarantee that job dispatching in the Internet of Vehicles is logical, the computation model, communications approach, interfering approach, and concerns about confidentiality are established. This research examines the best way to analyze and design a computation offloading approach for a multiuser smart Internet of Vehicles (IoV) based on mobile edge computing (MEC). We present an analytical offloading strategy for various MEC networks, covering one-to-one, one-to-two, and two-to-one situations, as it is challenging to determine an analytical offloading proportion for a generic MEC-based IoV network. The suggested analytic offload strategy may match the brute force (BF) approach with the best performance of the Deep Deterministic Policy Gradient (DDPG). For the analytical offloading design for a general MEC-based IoV, the analytical results in this study can be a valuable source of information.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"67 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09719-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The current task offloading technique needs to be performed more effectively. Onboard terminals cannot execute efficient computation due to the explosive expansion of data flow, the quick increase in vehicle population, and the growing scarcity of spectrum resources. As a result, this study suggests a task-offloading technique based on reinforcement learning computing for the Internet of Vehicles edge computing architecture. The system framework for the Internet of Vehicles has been initially developed. Although the control centre gathers all vehicle information, the roadside unit collects vehicle data from the neighborhood and sends it to a mobile edge computing server for processing. Then, to guarantee that job dispatching in the Internet of Vehicles is logical, the computation model, communications approach, interfering approach, and concerns about confidentiality are established. This research examines the best way to analyze and design a computation offloading approach for a multiuser smart Internet of Vehicles (IoV) based on mobile edge computing (MEC). We present an analytical offloading strategy for various MEC networks, covering one-to-one, one-to-two, and two-to-one situations, as it is challenging to determine an analytical offloading proportion for a generic MEC-based IoV network. The suggested analytic offload strategy may match the brute force (BF) approach with the best performance of the Deep Deterministic Policy Gradient (DDPG). For the analytical offloading design for a general MEC-based IoV, the analytical results in this study can be a valuable source of information.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.