Step Length Is a More Reliable Measurement Than Walking Speed for Pedestrian Dead-Reckoning.

Fatemeh Elyasi, Roberto Manduchi
{"title":"Step Length Is a More Reliable Measurement Than Walking Speed for Pedestrian Dead-Reckoning.","authors":"Fatemeh Elyasi, Roberto Manduchi","doi":"10.1109/ipin57070.2023.10332483","DOIUrl":null,"url":null,"abstract":"<p><p>Pedestrian dead reckoning (PDR) relies on the estimation of the length of each step taken by the walker in a path from inertial data (e.g. as recorded by a smartphone). Existing algorithms either estimate step lengths directly, or predict walking speed, which can then be integrated over a step period to obtain step length. We present an analysis, using a common architecture formed by an LSTM followed by four fully connected layers, of the quality of reconstruction when predicting step length vs. walking speed. Our experiments, conducted on a data set collected by twelve participants, strongly suggest that step length can be predicted more reliably than average walking speed over each step.</p>","PeriodicalId":510887,"journal":{"name":"International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation","volume":"2023 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipin57070.2023.10332483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrian dead reckoning (PDR) relies on the estimation of the length of each step taken by the walker in a path from inertial data (e.g. as recorded by a smartphone). Existing algorithms either estimate step lengths directly, or predict walking speed, which can then be integrated over a step period to obtain step length. We present an analysis, using a common architecture formed by an LSTM followed by four fully connected layers, of the quality of reconstruction when predicting step length vs. walking speed. Our experiments, conducted on a data set collected by twelve participants, strongly suggest that step length can be predicted more reliably than average walking speed over each step.

步长是比步行速度更可靠的行人死角测量方法。
行人惯性推算(PDR)依靠惯性数据(如智能手机记录的数据)估算步行者在路径上每一步的长度。现有的算法要么直接估算步长,要么预测行走速度,然后将行走速度与步长周期进行整合,得出步长。我们使用一个由 LSTM 和四个全连接层组成的通用架构,对预测步长与步行速度时的重构质量进行了分析。我们在 12 名参与者收集的数据集上进行了实验,结果强烈表明,预测步长比预测每一步的平均步行速度更可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信