Factors controlling the heterogeneity of shale pore structure and shale gas production of the Wufeng–Longmaxi shales in the Dingshan plunging anticline of the Sichuan Basin, China
Yijun Zheng , Yuhong Liao , Jie Wang , Yongqiang Xiong , Yunpeng Wang , Ping’an Peng
{"title":"Factors controlling the heterogeneity of shale pore structure and shale gas production of the Wufeng–Longmaxi shales in the Dingshan plunging anticline of the Sichuan Basin, China","authors":"Yijun Zheng , Yuhong Liao , Jie Wang , Yongqiang Xiong , Yunpeng Wang , Ping’an Peng","doi":"10.1016/j.coal.2023.104434","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Shale gas exploration in the Dingshan plunging </span>anticline of the Sichuan Basin, China, has uncovered substantial Wufeng–Longmaxi shale reserves. However, substantial variations exist in shale gas content and production among the wells in this region. We investigated the geological factors and mechanisms influencing shale pore structure heterogeneity and shale gas content and production in the area. We conducted comprehensive analyses of </span>mineralogy<span><span><span>, geochemical characteristics, and petrophysical properties on the Late Ordovician<span> Wufeng Formation–Early Silurian Longmaxi </span></span>Formation shales. Shale samples were collected from a shallow well, Anwen-1, located in proximity to the Qiyueshan </span>thrust fault<span><span><span> within the Dingshan plunging anticline. Additionally, samples from Dingye (DY) 1 and DY 3 wells, located at varying distances from the thrust fault, were examined. We also integrated previously published data from two correlative sections in the southeastern margin of the Sichuan Basin, each at different distances from the thrust fault. The pore volume, specific surface area, and porosity of the shales were positively correlated with their total organic content (TOC). However, strong lateral compressive stress, often occurring near the regional thrust fault, attenuated the linear relationship between </span>TOC<span> and pore volume/porosity. Lateral compressive stress did not significant affect shale porosity and pore structure when the distance from the regional thrust fault exceeded approximately 15 km. The specific surface area of the shale was less affected by compressive stress. Moreover, carbonate cementation<span> reduced porosity by sealing shale matrix pores and natural microfractures, reducing </span></span></span>nanopore connectivity. Consequently, shale gas production is not solely influenced by shale gas content but is also significantly affected by carbonate cementation. Therefore, shale reservoirs located at relatively long tectonic distances from regional thrust faults (approximately 15 km) within the Dingshan plunging anticline exhibit high pore volume, porosity, and shale gas content, rendering them favorable for shale gas exploration.</span></span></p></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Geology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166516223002525","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Shale gas exploration in the Dingshan plunging anticline of the Sichuan Basin, China, has uncovered substantial Wufeng–Longmaxi shale reserves. However, substantial variations exist in shale gas content and production among the wells in this region. We investigated the geological factors and mechanisms influencing shale pore structure heterogeneity and shale gas content and production in the area. We conducted comprehensive analyses of mineralogy, geochemical characteristics, and petrophysical properties on the Late Ordovician Wufeng Formation–Early Silurian Longmaxi Formation shales. Shale samples were collected from a shallow well, Anwen-1, located in proximity to the Qiyueshan thrust fault within the Dingshan plunging anticline. Additionally, samples from Dingye (DY) 1 and DY 3 wells, located at varying distances from the thrust fault, were examined. We also integrated previously published data from two correlative sections in the southeastern margin of the Sichuan Basin, each at different distances from the thrust fault. The pore volume, specific surface area, and porosity of the shales were positively correlated with their total organic content (TOC). However, strong lateral compressive stress, often occurring near the regional thrust fault, attenuated the linear relationship between TOC and pore volume/porosity. Lateral compressive stress did not significant affect shale porosity and pore structure when the distance from the regional thrust fault exceeded approximately 15 km. The specific surface area of the shale was less affected by compressive stress. Moreover, carbonate cementation reduced porosity by sealing shale matrix pores and natural microfractures, reducing nanopore connectivity. Consequently, shale gas production is not solely influenced by shale gas content but is also significantly affected by carbonate cementation. Therefore, shale reservoirs located at relatively long tectonic distances from regional thrust faults (approximately 15 km) within the Dingshan plunging anticline exhibit high pore volume, porosity, and shale gas content, rendering them favorable for shale gas exploration.
期刊介绍:
The International Journal of Coal Geology deals with fundamental and applied aspects of the geology and petrology of coal, oil/gas source rocks and shale gas resources. The journal aims to advance the exploration, exploitation and utilization of these resources, and to stimulate environmental awareness as well as advancement of engineering for effective resource management.