A constraint dissolving approach for nonsmooth optimization over the Stiefel manifold

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaoyin Hu, Nachuan Xiao, Xin Liu, Kim-Chuan Toh
{"title":"A constraint dissolving approach for nonsmooth optimization over the Stiefel manifold","authors":"Xiaoyin Hu, Nachuan Xiao, Xin Liu, Kim-Chuan Toh","doi":"10.1093/imanum/drad098","DOIUrl":null,"url":null,"abstract":"This paper focuses on the minimization of a possibly nonsmooth objective function over the Stiefel manifold. The existing approaches either lack efficiency or can only tackle prox-friendly objective functions. We propose a constraint dissolving function named NCDF and show that it has the same first-order stationary points and local minimizers as the original problem in a neighborhood of the Stiefel manifold. Furthermore, we show that the Clarke subdifferential of NCDF is easy to achieve from the Clarke subdifferential of the objective function. Therefore, various existing approaches for unconstrained nonsmooth optimization can be directly applied to nonsmooth optimization problems over the Stiefel manifold. We propose a framework for developing subgradient-based methods and establishing their convergence properties based on prior works. Furthermore, based on our proposed framework, we can develop efficient approaches for optimization over the Stiefel manifold. Preliminary numerical experiments further highlight that the proposed constraint dissolving approach yields efficient and direct implementations of various unconstrained approaches to nonsmooth optimization problems over the Stiefel manifold.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drad098","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the minimization of a possibly nonsmooth objective function over the Stiefel manifold. The existing approaches either lack efficiency or can only tackle prox-friendly objective functions. We propose a constraint dissolving function named NCDF and show that it has the same first-order stationary points and local minimizers as the original problem in a neighborhood of the Stiefel manifold. Furthermore, we show that the Clarke subdifferential of NCDF is easy to achieve from the Clarke subdifferential of the objective function. Therefore, various existing approaches for unconstrained nonsmooth optimization can be directly applied to nonsmooth optimization problems over the Stiefel manifold. We propose a framework for developing subgradient-based methods and establishing their convergence properties based on prior works. Furthermore, based on our proposed framework, we can develop efficient approaches for optimization over the Stiefel manifold. Preliminary numerical experiments further highlight that the proposed constraint dissolving approach yields efficient and direct implementations of various unconstrained approaches to nonsmooth optimization problems over the Stiefel manifold.
在 Stiefel 流形上进行非平滑优化的约束消解方法
本文主要研究如何最小化 Stiefel 流形上可能存在的非光滑目标函数。现有方法要么缺乏效率,要么只能处理近似友好目标函数。我们提出了一种名为 NCDF 的约束消解函数,并证明它在 Stiefel 流形的邻域内具有与原问题相同的一阶静止点和局部最小值。此外,我们还证明了 NCDF 的克拉克子微分很容易从目标函数的克拉克子微分得到。因此,现有的各种无约束非光滑优化方法可以直接应用于 Stiefel 流形上的非光滑优化问题。我们提出了一个框架,用于开发基于子梯度的方法,并在先前工作的基础上建立其收敛特性。此外,基于我们提出的框架,我们可以开发出针对 Stiefel 流形的高效优化方法。初步数值实验进一步表明,所提出的约束消解方法可以高效、直接地实现各种无约束方法,从而解决 Stiefel 流形上的非光滑优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信