Yassine El Moudene;Jaafar Idrais;Rida El Abassi;Abderrahim Sabour
{"title":"Gender-Based Analysis of User Reactions to Facebook Posts","authors":"Yassine El Moudene;Jaafar Idrais;Rida El Abassi;Abderrahim Sabour","doi":"10.26599/BDMA.2023.9020005","DOIUrl":null,"url":null,"abstract":"Online Social Networks (OSNs) are based on the sharing of different types of information and on various interactions (comments, reactions, and sharing). One of these important actions is the emotional reaction to the content. The diversity of reaction types available on Facebook (namely FB) enables users to express their feelings, and its traceability creates and enriches the users' emotional identity in the virtual world. This paper is based on the analysis of 119875012 FB reactions (Like, Love, Haha, Wow, Sad, Angry, Thankful, and Pride) made at multiple levels (publications, comments, and sub-comments) to study and classify the users' emotional behavior, visualize the distribution of different types of reactions, and analyze the gender impact on emotion generation. All of these can be achieved by addressing these research questions: who reacts the most? Which emotion is the most expressed?","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"7 1","pages":"75-86"},"PeriodicalIF":7.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10372951","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10372951/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Online Social Networks (OSNs) are based on the sharing of different types of information and on various interactions (comments, reactions, and sharing). One of these important actions is the emotional reaction to the content. The diversity of reaction types available on Facebook (namely FB) enables users to express their feelings, and its traceability creates and enriches the users' emotional identity in the virtual world. This paper is based on the analysis of 119875012 FB reactions (Like, Love, Haha, Wow, Sad, Angry, Thankful, and Pride) made at multiple levels (publications, comments, and sub-comments) to study and classify the users' emotional behavior, visualize the distribution of different types of reactions, and analyze the gender impact on emotion generation. All of these can be achieved by addressing these research questions: who reacts the most? Which emotion is the most expressed?
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.