Molecular docking and MD simulations reveal protease inhibitors block the catalytic residues in Prp8 intein of Aspergillus fumigatus: a potential target for antimycotics.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sunita Panda, Madhusmita Rout, Sarbani Mishra, Jyotirmayee Turuk, Sanghamitra Pati, Budheswar Dehury
{"title":"Molecular docking and MD simulations reveal protease inhibitors block the catalytic residues in Prp8 intein of <i>Aspergillus fumigatus:</i> a potential target for antimycotics.","authors":"Sunita Panda, Madhusmita Rout, Sarbani Mishra, Jyotirmayee Turuk, Sanghamitra Pati, Budheswar Dehury","doi":"10.1080/07391102.2023.2298735","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to azoles and amphotericin B especially in <i>Aspergillus fumigatus</i> is a growing concern towards the treatment of invasive fungal infection. At this critical juncture, intein splicing would be a productive, and innovative target to establish therapies against resistant strains. Intein splicing is the central event for the activation of host protein, essential for the growth and survival of various microorganisms including <i>A. fumigatus</i>. The splicing process is a four-step protease-like nucleophilic cascade. Thus, we hypothesise that protease inhibitors would successfully halt intein splicing and potentially restrict the growth of the aforementioned pathogen. Using Rosetta Fold and molecular dynamics simulations, we modelled Prp8 intein structure; resembling classic intein fold with horse shoe shaped splicing domain. To fully comprehend the active site of <i>Afu</i> Prp8 intein, C1, T62, H65, H818, N819 from intein sequences and S820, the first C-extein residue are selected. Molecular docking shows that two FDA-approved drugs, i.e. Lufotrelvir and Remdesivir triphosphate efficiently interact with Prp8 intein from the assortment of 212 protease inhibitors. MD simulation portrayed that Prp8 undergoes conformational change upon ligand binding, and inferred the molecular recognition and stability of the docked complexes. Per-residue decomposition analysis confirms the importance of F: block R802, V803, and Q807 binding pocket in intein splicing domain towards recognition of inhibitors, along with active site residues through strong hydrogen bonds and hydrophobic contacts. However, <i>in vitro</i> and <i>in vivo</i> assays are required to confirm the inhibitory action on Prp8 intein splicing; which may pave the way for the development of new antifungals for <i>A. fumigatus</i>.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"3526-3541"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2298735","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Resistance to azoles and amphotericin B especially in Aspergillus fumigatus is a growing concern towards the treatment of invasive fungal infection. At this critical juncture, intein splicing would be a productive, and innovative target to establish therapies against resistant strains. Intein splicing is the central event for the activation of host protein, essential for the growth and survival of various microorganisms including A. fumigatus. The splicing process is a four-step protease-like nucleophilic cascade. Thus, we hypothesise that protease inhibitors would successfully halt intein splicing and potentially restrict the growth of the aforementioned pathogen. Using Rosetta Fold and molecular dynamics simulations, we modelled Prp8 intein structure; resembling classic intein fold with horse shoe shaped splicing domain. To fully comprehend the active site of Afu Prp8 intein, C1, T62, H65, H818, N819 from intein sequences and S820, the first C-extein residue are selected. Molecular docking shows that two FDA-approved drugs, i.e. Lufotrelvir and Remdesivir triphosphate efficiently interact with Prp8 intein from the assortment of 212 protease inhibitors. MD simulation portrayed that Prp8 undergoes conformational change upon ligand binding, and inferred the molecular recognition and stability of the docked complexes. Per-residue decomposition analysis confirms the importance of F: block R802, V803, and Q807 binding pocket in intein splicing domain towards recognition of inhibitors, along with active site residues through strong hydrogen bonds and hydrophobic contacts. However, in vitro and in vivo assays are required to confirm the inhibitory action on Prp8 intein splicing; which may pave the way for the development of new antifungals for A. fumigatus.

分子对接和 MD 模拟揭示蛋白酶抑制剂可阻断烟曲霉 Prp8 内蛋白的催化残基:抗霉菌药物的潜在靶标。
在治疗侵袭性真菌感染方面,人们越来越关注曲霉菌对唑类和两性霉素 B 的抗药性问题。在这一关键时刻,内联蛋白剪接将是一个富有成效的创新靶点,可用于建立针对耐药菌株的疗法。内含素剪接是激活宿主蛋白质的核心过程,对包括烟曲霉在内的各种微生物的生长和存活至关重要。剪接过程是一个类似蛋白酶的四步亲核级联过程。因此,我们假设蛋白酶抑制剂能成功阻止内含素剪接,并有可能限制上述病原体的生长。利用 Rosetta 折叠和分子动力学模拟,我们建立了 Prp8 内含蛋白结构模型;该模型类似于具有马蹄形剪接结构域的经典内含蛋白折叠。为了充分理解 Afu Prp8 intein 的活性位点,我们选择了 intein 序列中的 C1、T62、H65、H818、N819 以及第一个 C-extein 残基 S820。分子对接显示,在212种蛋白酶抑制剂中,两种美国食品与药物管理局(FDA)批准的药物,即Lufotrelvir和Remdesivir triphosphate,能与Prp8 intein有效地相互作用。MD 模拟描绘了配体结合后 Prp8 的构象变化,并推断了对接复合物的分子识别和稳定性。每残基分解分析证实了F:区块R802、V803和Q807与内切蛋白剪接结构域中的结合口袋以及活性位点残基通过强氢键和疏水接触识别抑制剂的重要性。然而,还需要进行体外和体内试验,以确认对 Prp8 内蛋白剪接的抑制作用;这可能会为开发新的烟曲霉抗真菌药物铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信