Federated double DQN based multi-energy microgrid energy management strategy considering carbon emissions

IF 1.9 Q4 ENERGY & FUELS
Yanhong Yang , Tengfei Ma , Haitao Li , Yiran Liu , Chenghong Tang , Wei Pei
{"title":"Federated double DQN based multi-energy microgrid energy management strategy considering carbon emissions","authors":"Yanhong Yang ,&nbsp;Tengfei Ma ,&nbsp;Haitao Li ,&nbsp;Yiran Liu ,&nbsp;Chenghong Tang ,&nbsp;Wei Pei","doi":"10.1016/j.gloei.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-energy microgrids (MEMG) play an important role in promoting carbon neutrality and achieving sustainable development. This study investigates an effective energy management strategy (EMS) for MEMG. First, an energy management system model that allows for intra-microgrid energy conversion is developed, and the corresponding Markov decision process (MDP) problem is formulated. Subsequently, an improved double deep Q network (iDDQN) algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value, and a prioritized experience replay (PER) is introduced into the iDDQN to improve the training speed and effectiveness. Finally, taking advantage of the federated learning (FL) and iDDQN algorithms, a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network (NN) parameters with the federation layer, thus ensuring the privacy and security of data. The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO2 emissions and protecting data privacy.</p></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"6 6","pages":"Pages 689-699"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096511723000944/pdf?md5=ea430446f5155515f7d8154871aa960c&pid=1-s2.0-S2096511723000944-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511723000944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-energy microgrids (MEMG) play an important role in promoting carbon neutrality and achieving sustainable development. This study investigates an effective energy management strategy (EMS) for MEMG. First, an energy management system model that allows for intra-microgrid energy conversion is developed, and the corresponding Markov decision process (MDP) problem is formulated. Subsequently, an improved double deep Q network (iDDQN) algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value, and a prioritized experience replay (PER) is introduced into the iDDQN to improve the training speed and effectiveness. Finally, taking advantage of the federated learning (FL) and iDDQN algorithms, a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network (NN) parameters with the federation layer, thus ensuring the privacy and security of data. The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO2 emissions and protecting data privacy.

考虑碳排放的基于联邦双 DQN 的多能源微电网能源管理战略
多能源微电网(MEMG)在促进碳中和及实现可持续发展方面发挥着重要作用。本研究探讨了微电网的有效能源管理战略(EMS)。首先,建立了一个允许微网内部能量转换的能源管理系统模型,并提出了相应的马尔可夫决策过程(MDP)问题。随后,提出了一种改进的双深度 Q 网络(iDDQN)算法,通过修改 Q 值的计算方法来增强探索能力,并在 iDDQN 中引入了优先经验重放(PER),以提高训练速度和效果。最后,利用联合学习(FL)和 iDDQN 算法的优势,提出联合 iDDQN,设计 MEMG 能源管理策略,使每个微电网都能以本地神经网络(NN)参数的形式与联盟层共享经验,从而确保数据的隐私性和安全性。仿真结果验证了所提出的能源管理策略在降低 MEMG 经济成本、减少二氧化碳排放和保护数据隐私方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信