Baseline Serum and Stool Microbiome Biomarkers Predict Clinical Efficacy and Tissue Molecular Response After Ritlecitinib Induction Therapy in Ulcerative Colitis.
Mina Hassan-Zahraee, Zhan Ye, Li Xi, Elizabeth Dushin, Julie Lee, Jacek Romatowski, Jaroslaw Leszczyszyn, Silvio Danese, William J Sandborn, Christopher Banfield, Jeremy D Gale, Elena Peeva, Randy S Longman, Craig L Hyde, Kenneth E Hung
{"title":"Baseline Serum and Stool Microbiome Biomarkers Predict Clinical Efficacy and Tissue Molecular Response After Ritlecitinib Induction Therapy in Ulcerative Colitis.","authors":"Mina Hassan-Zahraee, Zhan Ye, Li Xi, Elizabeth Dushin, Julie Lee, Jacek Romatowski, Jaroslaw Leszczyszyn, Silvio Danese, William J Sandborn, Christopher Banfield, Jeremy D Gale, Elena Peeva, Randy S Longman, Craig L Hyde, Kenneth E Hung","doi":"10.1093/ecco-jcc/jjad213","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Ritlecitinib, an oral JAK3/TEC family kinase inhibitor, was well-tolerated and efficacious in the phase 2b VIBRATO study in participants with moderate-to-severe ulcerative colitis [UC]. The aim of this study was to identify baseline serum and microbiome markers that predict subsequent clinical efficacy and to develop noninvasive serum signatures as potential real-time noninvasive surrogates of clinical efficacy after ritlecitinib.</p><p><strong>Methods: </strong>Tissue and peripheral blood proteomics, transcriptomics, and faecal metagenomics were performed on samples before and after 8 weeks of oral ritlecitinib induction therapy [20 mg, 70 mg, 200 mg, or placebo once daily, N = 39, 41, 33, and 18, respectively]. Linear mixed models were used to identify baseline and longitudinal protein markers associated with efficacy. The combined predictivity of these proteins was evaluated using a logistic model with permuted efficacy data. Differential expression of faecal metagenomics was used to differentiate responders and nonresponders.</p><p><strong>Results: </strong>Peripheral blood serum proteomics identified four baseline serum markers [LTA, CCL21, HLA-E, MEGF10] predictive of modified clinical remission [MR], endoscopic improvement [EI], histological remission [HR], and integrative score of tissue molecular improvement. In responders, 37 serum proteins significantly changed at Week 8 compared with baseline [false discovery rate of <0.05]; of these, changes in four [IL4R, TNFRSF4, SPINK4, and LAIR-1] predicted concurrent EI and HR responses. Faecal metagenomics analysis revealed baseline and treatment response signatures that correlated with EI, MR, and tissue molecular improvement.</p><p><strong>Conclusions: </strong>Blood and microbiome biomarkers stratify endoscopic, histological, and tissue molecular responses to ritlecitinib, which may help guide future precision medicine approaches to UC treatment. ClinicalTrials.gov NCT02958865.</p>","PeriodicalId":94074,"journal":{"name":"Journal of Crohn's & colitis","volume":" ","pages":"1361-1370"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crohn's & colitis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ecco-jcc/jjad213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Ritlecitinib, an oral JAK3/TEC family kinase inhibitor, was well-tolerated and efficacious in the phase 2b VIBRATO study in participants with moderate-to-severe ulcerative colitis [UC]. The aim of this study was to identify baseline serum and microbiome markers that predict subsequent clinical efficacy and to develop noninvasive serum signatures as potential real-time noninvasive surrogates of clinical efficacy after ritlecitinib.
Methods: Tissue and peripheral blood proteomics, transcriptomics, and faecal metagenomics were performed on samples before and after 8 weeks of oral ritlecitinib induction therapy [20 mg, 70 mg, 200 mg, or placebo once daily, N = 39, 41, 33, and 18, respectively]. Linear mixed models were used to identify baseline and longitudinal protein markers associated with efficacy. The combined predictivity of these proteins was evaluated using a logistic model with permuted efficacy data. Differential expression of faecal metagenomics was used to differentiate responders and nonresponders.
Results: Peripheral blood serum proteomics identified four baseline serum markers [LTA, CCL21, HLA-E, MEGF10] predictive of modified clinical remission [MR], endoscopic improvement [EI], histological remission [HR], and integrative score of tissue molecular improvement. In responders, 37 serum proteins significantly changed at Week 8 compared with baseline [false discovery rate of <0.05]; of these, changes in four [IL4R, TNFRSF4, SPINK4, and LAIR-1] predicted concurrent EI and HR responses. Faecal metagenomics analysis revealed baseline and treatment response signatures that correlated with EI, MR, and tissue molecular improvement.
Conclusions: Blood and microbiome biomarkers stratify endoscopic, histological, and tissue molecular responses to ritlecitinib, which may help guide future precision medicine approaches to UC treatment. ClinicalTrials.gov NCT02958865.